Topologies on \mathbb{R}^{n} induced by smooth subsets

Fredric D. Ancel
Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA

Received 22 January 1990
Revised 17 September 1990 and 22 October 1990

Abstract

Ancel, F.D., Topologies on \mathbb{R}^{n} induced by smooth subsets, Topology and its Applications 43 (1992) 189-201.

If \mathscr{G} is a collection of subsets of \mathbb{R}^{n}, let \mathscr{T}_{y} denote the largest topology on \mathbb{R}^{n} which restricts to the standard topology on each element of \mathscr{S}, and let $\mathscr{H}_{\mathscr{f}}$ denote the homeomorphism group of \mathbb{R}^{n} with the topology $\mathscr{T}_{s f}$. Let $\mathscr{T}_{\text {sid }}$ denote the standard topology on \mathbb{R}^{n} and let $\mathscr{H}_{\text {std }}$ denote the homeomorphism group of \mathbb{R}^{n} with the standard topology.

Theorem 1. If \mathscr{S} is any collection of subsets of $\mathbb{R}^{\prime \prime}$ which contains all C^{1} regular 1-manifolds, then $\mathscr{T}_{s f}=\mathscr{F}_{\mathrm{std}}$.

A natural collection of subsets of $\mathbb{R}^{\prime \prime}$ called smooth sets is defined which includes the zero set of every nonconstant polynomial and every C^{2} regular submanifold of $\mathbb{R}^{\prime \prime}$ of dimension $<n$.
Theorem 2. If \mathscr{F} is the collection of all smooth subsets of $\mathbb{Q}^{\prime \prime}$, then \mathscr{T}_{y} is strictly larger than $\mathscr{T}_{\text {std }}$ and \mathscr{H}_{y} is strictly smaller than $\mathscr{H}_{\text {sid }}$.
Theorem 3. There is an injective function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which is discontinuous at each point of a countable dense subset of \mathbb{R}^{n}, and whose restriction to each smooth subset of \mathbb{R}^{n} is continuous.

Keywords: $C^{1} 1$-manifolds, smooth sets, induced topologies, induced homeomorphism groups, Taylor's formula.
AMS (MOS) Subj. Class.: Primary 54A10; secondary 26B05, 54C99, 57N15.

1. Introduction

At the 1988 Spring Topology Conference in Gainesville, FL, Otto Laback, a physicist from Graz Technical University in Graz, Austria, posed the following question. Given that we can directly observe only certain subsets of \mathbb{R}^{n} (such as smoothly embedded 1 -manifolds corresponding to particle paths), what possibly nonstandard topologies on \mathbb{R}^{n} are compatible with the usual topology on physically observable subsets? He also wondcred how the homeomorphism group of \mathbb{R}^{n} with such a nonstandard topology compares to the standard homeomorphism group. The
following definition allows us to give a precise formulation of a version of this question.

Let \mathscr{S} be a collection of subsets of \mathbb{R}^{n}. Define \mathscr{T}_{y} to be $\left\{U \subset \mathbb{R}^{n}: U \cap S\right.$ is a relatively open subset of S for each $S \in \mathscr{S}\}$. Then $\mathscr{T}_{\mathscr{f}}$ is the largest topology on \mathbb{R}^{n} which restricts to the standard topology on each element of \mathscr{S}. Define $\mathscr{H}_{\mathscr{S}}$ to be the homeomorphism group of \mathbb{R}^{n} with the topology $\mathscr{T}_{\mathscr{f}}$. Let $\mathscr{T}_{\text {std }}$ denote the standard topology on \mathbb{R}^{n}, and let $\mathscr{H}_{\text {std }}$ denote the homeomorphism group of \mathbb{R}^{n} with the standard topology.

We now state a version of Laback's question.
Question. For which collections \mathscr{S} of subsets of \mathbb{R}^{n} is $\mathscr{T}_{\mathscr{S}}=\mathscr{T}_{\text {std }}$, and is $\mathscr{H}_{\mathscr{Y}}=\mathscr{H}_{\text {std }}$?
We will answer this question for two different natural choices of \mathscr{S}. To understand these choices, we need several definitions.

Let $1 \leqslant k \leqslant n$ and let $r \geqslant 1$. Suppose V is an open subset of \mathbb{R}^{k} and $f=$ $\left(f_{1}, \ldots, f_{n}\right): V \rightarrow \mathbb{R}^{n}$ is a map. Recall that f is a C^{r} map if at each point of V all the partial derivatives of the f_{i}^{\prime} 's of order $\leqslant r$ exist and are continuous. For each $x \in V$, let $f^{\prime}(x)$ denote the $n \times k$ matrix whose (i, j) th entry is the first order partial derivative $\left(\partial f_{i} / \partial x_{j}\right)(x) . f$ is regular if for every $x \in V$, the $n \times k$ matrix $f^{\prime}(x)$ exists and is of rank $k . f$ is a C^{r} regular embedding if f is a C^{r} regular topological embedding.

A subset M of \mathbb{R}^{n} is a C^{r} regular k-manifold if for each $x \in M$, there is an open subset V of \mathbb{R}^{k} and a C^{r} regular embedding $e: V \rightarrow \mathbb{R}^{n}$ such that $e(V)$ is a neighborhood of x in M.

A subset S of \mathbb{R}^{n} is smooth if each point of S has a neighborhood U in \mathbb{R}^{n} with the property that there is an $r \geqslant 1$ and a C^{r+1} map $f: U \rightarrow \mathbb{R}$ such that $S \cap U \subset f^{-1}(0)$ and f has a nonzero partial derivative of order $\leqslant r$ at each point of U. For example, the zero set of every nonconstant polynomial is a smooth set. Also, for $1 \leqslant k<n$, every C^{2} regular k-manifold in \mathbb{R}^{n} is a smooth set. A proof of this fact is sketched in the appendix.

We now formulate two theorems which answer our version of Laback's question for two choices of \mathscr{S}. In Theorem $1, \mathscr{S}$ is required to include a class of subsets of \mathbb{R}^{n} which forces $\mathscr{T}_{\mathscr{S}}$ to equal $\mathscr{T}_{\text {std }}$, and which is the smallest natural class with this property that the author could imagine. In Theorem 2, \mathscr{P} is chosen to be a class of subsets of \mathbb{R}^{n} for which $\mathscr{T}_{\mathscr{f}}$ fails to equal $\mathscr{T}_{\text {std }}$, and which is the largest natural class with this property that the author could imagine.

Theorem 1. If \mathscr{S} is any collection of subsets of \mathbb{R}^{n} which contains all C^{1} regular 1-manifolds, then $\mathscr{T}_{\mathscr{P}}=\mathscr{T}_{\text {std }}$ and, hence, $\mathscr{H}_{s}=\mathscr{H}_{\text {std }}$.

Theorem 2. If \mathscr{G} is the collection of all smooth subsets of \mathbb{R}^{n}, then $\mathscr{T}_{\mathscr{S}}$ is strictly larger than $\mathscr{T}_{\text {std }}$ and \mathscr{H}_{f} is strictly smaller than $\mathscr{H}_{\text {std }}$.

Results similar to Theorem 1 have been obtained independently by C. Cooper in his 1990 University of Oklahoma Ph.D. thesis, and F. Gressl of Graz Technical University (unpublished).

The paper [2] investigates some related questions. The techniques developed here to prove Theorem 2 also allow us to generalize a construction in [2] and thereby to answer Question 3 of that paper. The result of our generalized construction is described in the next theorem.

Theorem 3. There is a countable dense subset Z of \mathbb{R}^{n} and an injective function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which is discontinuous at each point of Z, continuous at each point of $\mathbb{R}^{n}-Z$, and whose restriction to each smooth subset of \mathbb{R}^{n} is continuous.

Our proofs of Theorems 2 and 3 rely on the following technical theorem. Recall that an arc in \mathbb{R}^{n} is tame if there is a homeomorphism of \mathbb{R}^{n} which carries the arc to a straight line segment.

Theorem 4. In \mathbb{R}^{n}, there is a tame arc A with endpoint 0 and an open set V containing $A-\{0\}$ with the property that if S is any smooth set containing 0 , then $0 \notin \mathrm{cl}(S \cap V)$.

The reader may wish to refer to [1] where related results for \mathbb{R}^{2} are obtained. In [1], a different point of view is adopted, which leads to results that are not exactly parallel to those proved here. However, there is a strong similarity between the techniques used here and in [1].

The following notation is used at several points in this paper. For $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$, let $x \cdot y$ denote the dot product of x and y, and let $|x|$ denote the Euclidean norm of x; thus, $x \cdot y=\sum x_{i} y_{i}$ and $|x|=(x \cdot x)^{1 / 2}$.

2. The proof of Theorem 1

It follows immediately from the definition of $\mathscr{T}_{\mathscr{s}}$ that $\mathscr{T}_{\text {std }} \subset \mathscr{T}_{\mathscr{f}}$. Let $U \in \mathscr{T}_{s f}$. It suffices to prove that $U \in \mathscr{T}_{\text {std }}$. Assume $U \notin \mathscr{T}_{\text {std }}$. We will derive a contradiction.

Since $U \not \subset \mathscr{T}_{\text {std }}$, then there is a sequence $\left\{x_{n}\right\}$ in $\mathbb{R}^{n}-U$ which converges (standardly) to a point $y \in U$. No element of \mathscr{S} can contain both y and a subsequence of $\left\{x_{n}\right\}$. For if $y \in S \in \mathscr{S}$, then $U \cap S$ is a standard neighborhood of y in S. So any subsequence of $\left\{x_{n}\right\}$ that lies in S would eventually enter $U \cap S$, contradicting the fact that $\left\{x_{n}\right\}$ lies in $\mathbb{R}^{n}-U$. Now our strategy for reaching a contradiction is clear: we will construct an element of \mathscr{S} which contains y and a subsequence of $\left\{x_{n}\right\}$.

For each $n \geqslant 1$, set $u_{n}=\left(x_{n}-y\right) /\left|x_{n}-y\right|$. By passing to a subsequence, we can assume that $\left\{u_{n}\right\}$ converges to a point $v \in \mathbb{R}^{n}$. Clearly $|v|=1$. For each $n \geqslant 1$, set $t_{n}=\left(x_{n}-y\right) \cdot v$. By passing to a subsequence, we can assume that $\left\{t_{n}\right\}$ is a sequence of positive real numbers converging to 0 such that $t_{n+1}<\frac{1}{3} t_{n}$ for each $n \geqslant 1$. For each $n \geqslant 1$, set $J_{n}=\left[\left(\frac{1}{2}\right) t_{n},\left(\frac{3}{2}\right) t_{n}\right]$. Then $J_{m} \cap J_{n}=\emptyset$ for $m \neq n$. For each $n \geqslant 1$, set $w_{n}=$ $x_{n}-y-t_{n} v$. Then $w_{n} \rightarrow 0$ and $w_{n} / t_{n} \rightarrow 0$.

We now define a C^{1} regular embedding $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{n}$ which passes through y and $\left\{x_{n}\right\}$. First let $\eta: \mathbb{R} \rightarrow[0, \infty)$ be a C^{∞} map such that $\eta((-\infty, 0] \cup[1, \infty))=\{0\}$ and
$\eta\left(\frac{1}{2}\right)=1$. Define $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{n}$ by $\alpha(t)=y+t v+\sum_{n \geqslant 1} \eta\left(\left(t / t_{n}\right)-\left(\frac{1}{2}\right)\right) w_{n}$. Thus, $\alpha(t)=$ $y+t v+\eta\left(\left(t / t_{n}\right)-\left(\frac{1}{2}\right)\right) w_{n}$ if $t \in J_{n}$ for some $n \geqslant 1$, and $\alpha(t)=y+t v$ otherwise. So α is straight line perturbed by a sequence of bumps.
α passes through y and $\left\{x_{n}\right\}$, because $\alpha(0)=y$ and $\alpha\left(t_{n}\right)=x_{n}$ for $n \geqslant 1$. Clearly, α is C^{∞} except possibly at $t=0$. Since η is bounded and $w_{n} \rightarrow 0$, then $\alpha(t) \rightarrow y=\alpha(0)$ as $t \rightarrow 0$. Hence, α is continuous at $t=0$ (as well as at all other values of t). Furthermore, α is a topological embedding because $(\alpha(t)-y) \cdot v=t$ for every $t \in \mathbb{R}$. Observe that $(\alpha(t)-y) / t=v+\eta\left(\left(t / t_{n}\right)-\left(\frac{1}{2}\right)\right)\left(w_{n} / t\right)$ if $t \in J_{n}$ for some $n \geqslant 1$, and $(\alpha(t)-y) / t=v$ otherwise. Since η is bounded, $w_{n} / t \leqslant 2 w_{n} / t_{n}$ for $t \in J_{n}$, and $w_{n} / t_{n} \rightarrow$ 0 , it follows that $(\alpha(t)-y) / t \rightarrow v$ as $t \rightarrow 0$. So $\alpha^{\prime}(0)$ exists and equals v. Observe that $\alpha^{\prime}(t)=v+\eta^{\prime}\left(\left(t / t_{n}\right)-\left(\frac{1}{2}\right)\right)\left(w_{n} / t_{n}\right)$ if $t \in J_{n}$ for some $n \geqslant 1$, and $\alpha^{\prime}(t)=v$ otherwise. Since η^{\prime} is bounded and $w_{n} / t_{n} \rightarrow 0$, it follows that $\alpha^{\prime}(t) \rightarrow v=\alpha^{\prime}(0)$ as $t \rightarrow 0$. Hence, α^{\prime} is continuous at $t=0$ (as well as at all other values of t). This proves α is a C^{1} map. Finally, $\alpha^{\prime}(t) \cdot v=v \cdot v=1$ for each $t \in \mathbb{R}$, proving α is regular. We conclude that $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is a C^{1} regular embedding which passes through y and $\left\{x_{n}\right\}$. So $\alpha(\mathbb{R})$ is a C^{1} regular 1-manifold in \mathbb{R}^{n}.

Since $\alpha(\mathbb{R})$ is an element of \mathscr{S} which contains y and a subsequence of the original $\left\{x_{n}\right\}$, we have reached the desired contradiction.

3. The proof of Theorem 4

Our proof of Theorem 4 uses the following notation. Set $\omega=\{0,1,2, \ldots\}$. For $a=\left(a_{1}, \ldots, a_{n}\right) \in \omega^{n}$, set $\|a\|=\sum_{1 \leqslant i \leqslant n} a_{i}$ and set $a!=\prod_{1 \leqslant i \leqslant n}\left(a_{i}!\right)$. For $x=$ $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $a=\left(a_{1}, \ldots, a_{n}\right) \in \omega^{n}$, set $x^{a}=\prod_{1 \leqslant i \leqslant n} x_{i}^{a_{i}}$. If X is a set, $\varphi=$ $\left(\varphi_{1}, \ldots, \varphi_{n}\right): X \rightarrow \mathbb{R}^{n}$ is a function, and $a=\left(a_{1}, \ldots, a_{n}\right) \in \omega^{n}$, then define the function $\varphi^{a}: X \rightarrow \mathbb{R}$ by $\varphi^{a}(x)=(\varphi(x))^{a}=\prod_{1 \leqslant i \leqslant n}\left(\varphi_{i}(x)\right)^{a_{i}}$ for $x \in X$. For $a=\left(a_{1}, \ldots, a_{n}\right) \in \omega^{n}$, if U is an open subset of \mathbb{Q}^{n} and $f: U \rightarrow \mathbb{B}$ is a sufficiently differentiable map, then for every $p \in U$ set

$$
f^{(a)}(p)=\frac{\partial^{\|a\|} f}{\partial x_{1}^{a_{1}} \ldots \partial x_{n^{\prime}}^{a_{n}}}(p) .
$$

Let $r \geqslant 1$, and let U be an open subset of \mathbb{R}^{n}. A function $f: U \rightarrow \mathbb{R}$ is a C^{r} map if for each $a \in \omega^{n}$ with $\|a\| \leqslant r, f^{(\alpha)}(p)$ exists for every $p \in U$ and $f^{(a)}: U \rightarrow \mathbb{R}$ is continuous. Let $C^{r}(U)$ denote the set of all C^{r} maps from U to \mathbb{R}.

Let $r \geqslant 1$, let U be an open subset of \mathbb{R}^{n}, let $f \in C^{r}(U)$, and let $p \in U$. The degree r Taylor polynomial of f at p is

$$
T_{p}^{r} f(x)=\sum_{\substack{a \in \omega^{n} \\\|a\| \leqslant r}} \frac{1}{a!} f^{(a)}(p) x^{a}
$$

for $x \in \mathbb{R}^{n}$.
Our notation allows us to state:

A version of Taylor's formula. Let $r \geqslant 1$, let U be an open subset of \mathbb{R}^{n}, let $f \in C^{r+1}(U)$, and let $p \in U$. If $x \in \mathbb{R}^{n}$ such that U contains the straight line segment from p to $p+x$, then there is a $\theta \in(0,1)$ such that

$$
f(p+x)=T_{p}^{r} f(x)+\sum_{\substack{a \in \omega^{n} \\\|a\| \|=r+1}} \frac{1}{a!} f^{(a)}(p+\theta x) x^{a} .
$$

In the appendix, we indicate how this formula is derived from a version of Taylor's formula commonly found in advanced calculus texts.

Observe that if $r \geqslant 1, U$ is an open subset of \mathbb{R}^{n}, and $f \in C^{r}(U)$, then f has a nonzero partial derivative of order $\leqslant r$ at p if and only if $T_{p}^{r} f(x) \neq 0$. Using this observation, we restate the definition of smooth. A subset S of \mathbb{R}^{n} is smooth if each point of S has a neighborhood U in \mathbb{R}^{n} with the property that there is an $r \geqslant 1$ and an $f \in C^{r+1}(U)$ such that $S \cap U \subset f^{-1}(0)$ and $T_{p}^{r} f \neq 0$ for every $p \in U$.

Next, we define a linear order $<$ on ω^{n}. For $a, b \in \omega^{n}$, we declare $a<b$ if either (1) $\|a\|<\|b\|$ or (2) $\|a\|=\|b\|$ and there is a k such that $1 \leqslant k \leqslant n, a_{i}=b_{i}$ for $1 \leqslant i<k$, and $a_{k}<b_{k}$. We observe that $<$ is a well ordering of ω^{n}, because for each $a \in \omega^{n}$, $\left\{b \in \omega^{n}: b<a\right\}$ is a finite set.

Our proof of Theorem 4 depends on the following lemma.
Lemma. There are order preserving homeomorphisms $\varphi_{1}, \ldots, \varphi_{n}:[0,1] \rightarrow[0,1]$ with the following property. Define the embedding $\varphi:[0,1] \rightarrow \mathbb{Q}^{n}$ by $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$. If $a, b \in \omega^{n}$ and $a<b$, then

$$
\lim _{t \rightarrow 0} \frac{\varphi^{b}(t)}{\varphi^{a}(t)}=0 .
$$

Proof of Lemma. We begin by defining the homeomorphism $\psi:[0,1] \rightarrow[0,1]$ by $\psi(0)=0$ and $\psi(t)=\ln 2 /(\ln 2-\ln t)$ for $0<t \leqslant 1$. By applying l'Hospital's rule to $\ln t / t^{-r}$, we find that $t^{r} \ln t \rightarrow 0$ as $t \rightarrow 0$ for any $r>0$. It follows that for any $s>$ $0, t^{1 / s} / \psi(t) \rightarrow 0$ as $t \rightarrow 0$. Thus, for any $s \geqslant 0, t /(\psi(t))^{s} \rightarrow 0$ as $t \rightarrow 0$.

Next define the homeomorphism $\psi_{i}:[0,1] \rightarrow[0,1]$ for each $i \geqslant 1$ by $\psi_{1}=\psi$ and $\psi_{i}=\psi \circ \psi_{i-1}$ for $i>1$. Then for $s \geqslant 0$ and $i \geqslant 1$, since $\psi_{i}(t) \rightarrow 0$ as $t \rightarrow 0$, and since $\psi_{i}(t) /\left(\psi_{i+1}(t)\right)^{s}=\psi_{i}(t) /\left(\psi\left(\psi_{i}(t)\right)\right)^{s}$, then the last line of the preceding paragraph implies that $\psi_{i}(t) /\left(\psi_{i+1}(t)\right)^{s} \rightarrow 0$ as $t \rightarrow 0$.

Finally for each $i \geqslant 1$, define the homeomorphism $\varphi_{i}:[0,1] \rightarrow[0,1]$ by $\varphi_{i}(t)=$ $t \psi_{i}(t)$. The embedding $\varphi:[0,1] \rightarrow \mathbb{R}^{n}$ is defined by $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$. Recall that if $a=\left(a_{1}, \ldots, a_{n}\right) \in \omega^{n}$, then $\varphi^{a}:[0,1] \rightarrow[0,1]$ is given by

$$
\varphi^{a}(t)=\left(\varphi_{1}(t)\right)^{a_{1}} \cdots\left(\varphi_{n}(t)\right)^{a_{n}} .
$$

Let $a, b \in \omega^{n}$ such that $a<b$. Then there is a finite sequence $a=c_{0}<c_{1}<\cdots<c_{k}=$ b in ω^{n} such that c_{i} is the immediate successor of c_{i-1} for $1 \leqslant i \leqslant k$. Since

$$
\frac{\varphi^{b}(t)}{\varphi^{a}(t)}=\prod_{1 \leqslant i \leqslant k} \frac{\varphi^{c_{i}}(t)}{\varphi^{c_{i-1}}(t)},
$$

then it clearly suffices to consider the situation in which b is the immediate successor of a.

There are two cases.
Case 1: $\|a\|<\|b\|$. In this case $a=(r, 0, \ldots, 0,0)$ and $b=(0,0, \ldots, 0, r+1)$. So

$$
\frac{\varphi^{b}(t)}{\varphi^{a}(t)}=\frac{\left(\varphi_{n}(t)\right)^{r+1}}{\left(\varphi_{1}(t)\right)^{r}}=\left(\psi_{n}(t)\right)^{r+1}\left[\frac{t}{(\psi(t))^{r}}\right] .
$$

It now follows from our earlier observations that $\varphi^{b}(t) / \varphi^{a}(t) \rightarrow 0$ as $t \rightarrow 0$.
Case 2: $\|a\|=\|b\|$. In this case there is a $k, 1 \leqslant k<n$, such that $a_{i}=b_{i}$ for $1 \leqslant i<k, a=\left(a_{1}, \ldots, a_{k-1}, r, s, 0, \ldots, 0,0\right)$ and $b=\left(a_{1}, \ldots, a_{k-1}, r+1,0,0, \ldots, 0\right.$, $s-1)$. So

$$
\frac{\varphi^{b}(t)}{\varphi^{a}(t)}=\frac{\left(\varphi_{k}(t)\right)^{r+1}\left(\varphi_{n}(t)\right)^{s-1}}{\left(\varphi_{k}(t)\right)^{r}\left(\varphi_{k+1}(t)\right)^{s}}=\left[\frac{\psi_{k}(t)}{\left(\psi_{k+1}(t)\right)^{s}}\right]\left(\psi_{n}(t)\right)^{s-1}
$$

Again our earlier observations imply that $\varphi^{b}(t) / \varphi^{a}(t) \rightarrow 0$ as $t \rightarrow 0$.
We now prove Theorem 4. We define the arc A in \mathbb{R}^{n} by $A=\varphi([0,1])$, where $\varphi:[0,1] \rightarrow \mathbb{R}^{n}$ is the embedding of the preceding lemma. Then $0=\varphi(0) \in \partial A$. To see that A is tame, observe that for $1 \leqslant i \leqslant n$, the homeomorphism $\varphi_{i}:[0,1] \rightarrow[0,1]$ extends to a homeomorphism $\Phi_{i}: \mathbb{R} \rightarrow \mathbb{R}$ such that $\Phi_{i}=\mathrm{id}$ on $(-\infty, 0] \cup[1, \infty)$. Define the homeomorphism $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $h(x)=\left(\Phi_{1}\left(x_{1}\right), \ldots, \Phi_{n}\left(x_{n}\right)\right)$ for $x=$ $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, and note that h carries the straight line segment $\{(t, \ldots, t): 0 \leqslant t \leqslant$ 1\} onto A.

For each $t \in(0,1]$, define the neighborhood $V(t)$ of $\varphi(t)$ in \mathbb{R}^{n} by

$$
V(t)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: 2^{-1} \varphi_{i}(t)<x_{i}<2 \varphi_{i}(t) \text { for } 1 \leqslant i \leqslant n\right\} .
$$

Observe that if $t \in(0,1], x=\left(x_{1}, \ldots, x_{n}\right) \in V(t)$, and $a \in \omega^{n}$, then $2^{-\|a\|} \varphi^{a}(t)<x^{u}<$ $2^{\|a\|} \varphi^{a}(t)$. Next define $V=\bigcup_{0<t \leqslant 1} V(t)$. Then V is an open subset of \mathbb{R}^{n} containing A- $\{0\}$.

Let S be a smooth set containing 0 . We shall prove that $0 \notin \mathrm{cl}(V \cap S)$. For assume otherwise. Then there is a sequence $\left\{x_{k}\right\}$ in $V \cap S$ that converges to 0 . For each $k \geqslant 1$, there is a $t_{k} \in(0,1]$ such that $x_{k} \in V\left(t_{k}\right)$. It follows from the way in which the $V(t)$ are defined that $\left\{t_{k}\right\}$ must converge to 0 .
Since S is a smooth set and $0 \in S$, there is a neighborhood U of 0 in \mathbb{R}^{n}, an $r \geqslant 1$, and an $f \in C^{r+1}(U)$ such that $S \cap U \subset f^{-1}(0)$ and $T_{p}^{r} f \neq 0$ for every $p \in U$. We will argue that $T_{0}^{r} f=0$, and thereby reach a contradiction.

We can assume that $\left\{x_{k}\right\}$ lies in U, and that for each $k \geqslant 1, U$ contains the straight line segment from 0 to x_{k}. For each $k \geqslant 1, f\left(x_{k}\right)=0$ because $x_{k} \in S \cap U$. So, for each $k \geqslant 1$, the Taylor formula for $f\left(x_{k}\right)$ takes the form

$$
0=T_{0}^{r} f\left(x_{k}\right)+\sum_{\substack{a \in \omega^{\prime \prime} \\\|a\|=r+1}} \frac{1}{a!} f^{(a)}\left(\theta_{k} x_{k}\right)\left(x_{k}\right)^{a}
$$

for some $\theta_{k} \in(0,1)$.

To make the right side of this formula more uniform, we define $z_{s, k} \in \mathbb{R}^{n}$ for $0 \leqslant s \leqslant r+1$ and $k \geqslant 1$ as follows. For $k \geqslant 1$, set $z_{s, k}=0$ if $0 \leqslant s \leqslant r$, and set $z_{r+1, k}=\theta_{k} x_{k}$. Observe that for any fixed s between 0 and $r \nmid 1, \lim _{k \rightarrow \infty} z_{s, k}=0$. Now the two terms on the right side of this formula can be absorbed into a single summation in which $\|a\|$ runs from 0 to $r+1$. For each $k \geqslant 1$, we rewrite the Taylor formula for $f\left(x_{k}\right)$ as

$$
0=\sum_{\substack{a \in \omega^{\prime \prime} \\\|a\| \leqslant r+1}} \frac{1}{a!} f^{(a)}\left(z_{\|a\|, k}\right)\left(x_{k}\right)^{a}
$$

We now begin the inductive proof that $T_{0}^{r} f=0$. The first term of $T_{0}^{r} f$ is $f^{(0)}(0)=$ $f(0) . f(0)=0$ because $0 \in S \cap U$. So $f^{(0)}(0)=0$.

Next let $a \in \omega^{n}$ such that $0<\|a\| \leqslant r$, and inductively assume that if $b \in \omega^{n}$ and $b<a$, then $f^{(b)}(0)=0$. Then for each $k \geqslant 1$, the Taylor formula for $f\left(x_{k}\right)$ takes the form

$$
0=\sum_{\substack{b \in \omega^{n} \\\|b\| \leqslant r+1 \\ a \leqslant b}} \frac{1}{b!} f^{(b)}\left(z_{\|b\|, k}\right)\left(x_{k}\right)^{b}
$$

By passing to a subsequence of $\left\{x_{k}\right\}$, we can assume that for each $b \in \omega^{n}$ with $\|b\| \leqslant r+1$, the sequence $\left\{f^{(b)}\left(z_{\|b\|, k}\right)\right\}$ does not take on both positive and negative values. Then for each $b \in \omega^{n}$ with $\|b\| \leqslant r+1$, set $\varepsilon(b)=+1$ or -1 depending on whether $\left\{f^{(b)}\left(z_{\|b\|, k}\right)\right\}$ is nonnegative or nonpositive.

For each $k \geqslant 1$, since $x_{k} \in V\left(t_{k}\right)$, then for each $b \in \omega^{n}$ with $\|b\| \leqslant r+1$, we have the inequality

$$
2^{-\|b\|} \varphi^{b}\left(t_{k}\right)<\left(x_{k}\right)^{b}<2^{\|b\|} \varphi^{b}\left(t_{k}\right)
$$

Multiplying this inequality by $f^{(b)}\left(z_{\|b\|, k}\right)$ yields the inequality

$$
\begin{aligned}
2^{-\varepsilon(b)\|b\|} f^{(b)}\left(z_{\|b\|, k}\right) \varphi^{b}\left(t_{k}\right) & \leqslant f^{(b)}\left(z_{\|b\|, k}\right)\left(x_{k}\right)^{b} \\
& \leqslant 2^{\varepsilon(b)\|b\|} f^{(b)}\left(z_{\|b\|, k}\right) \varphi^{b}\left(t_{k}\right)
\end{aligned}
$$

Dividing the preceding inequality by b !, summing over all $b \in \omega^{n}$ with $\|b\| \leqslant r+1$ and $a \leqslant b$, and recognizing the middle summation as a version of the Taylor formula for $f\left(x_{k}\right)$, yields the inequality

$$
\sum_{\substack{b \in \omega^{n} \\\|b\| \leqslant r+1 \\ a \leqslant b}} 2^{-\varepsilon(b)\|b\|} \frac{1}{b!} f^{(b)}\left(z_{\|b\|, k}\right) \varphi^{b}\left(t_{k}\right) \leqslant 0 \leqslant \sum_{\substack{b \in \omega^{n} \\\|b\| \leqslant r+1 \\ a \leqslant b}} 2^{\varepsilon(b)\|b\|} \frac{1}{b!} f^{(b)}\left(z_{\|b\|, k}\right) \varphi^{b}\left(t_{k}\right) .
$$

We divide the preceding inequality by $\varphi^{u}\left(t_{k}\right)$, to obtain

$$
\sum_{\substack{b \in \omega^{n} \\\|b\| \leqslant r+1 \\ a \leqslant b}} 2^{-\varepsilon(b)\|b\|} \frac{1}{b!} f^{(b)}\left(z_{\|b\|, k}\right) \frac{\varphi^{b}\left(t_{k}\right)}{\varphi^{a}\left(t_{k}\right)} \leqslant 0 \leqslant \sum_{\substack{b \in \omega^{n} \\\|b\| \leqslant r+1 \\ u \approx b}} 2^{\varepsilon(b)\|b\|} \frac{1}{b!} f^{(b)}\left(z_{\|b\|, k}\right) \frac{\varphi^{b}\left(t_{k}\right)}{\varphi^{a}\left(t_{k}\right)} .
$$

Now we let $k \rightarrow \infty$ in this inequality. Then $t_{k} \rightarrow 0$. So the above lemma implies that if $b \in \omega^{n},\|b\| \leqslant r+1$, and $a<b$, then $\varphi^{b}\left(t_{k}\right) / \varphi^{a}\left(t_{k}\right) \rightarrow 0$. Also if $b \in \omega^{n}$ and $\|b\| \leqslant r+1$, then $f^{(b)}\left(z_{\|\mid b\|, k}\right) \rightarrow f^{(b)}(0)$ because $z_{\|b\|, k} \rightarrow 0$. Thus, all the terms of the summations vanish except the $b=a$ terms. $z_{\|a\|, k}=0$ because $\|a\| \leqslant r$. So we are left with the inequality

$$
2^{-\varepsilon(a)\|a\|} \frac{1}{a!} f^{(a)}(0) \leqslant 0 \leqslant 2^{\varepsilon(a)\|a\|} \frac{1}{a!} f^{(a)}(0) .
$$

Since $2^{\perp \varepsilon(a)\|a\|} / a!>0$, we conclude that $f^{(a)}(0)=0$.
It now follows inductively that $f^{(a)}(0)=0$ for each $a \in \omega^{n}$ such that $\|a\| \leqslant r$. Therefore, $T_{0}^{r} f=0$. We have now reached the contradiction we sought. We conclude that $0 \notin \mathrm{cl}(V \cap S)$.

4. The proof of Theorem 2

Let \mathscr{F} denote the collection of all smooth subsets of \mathbb{R}^{n}. It follows immediately from the definition of $\mathscr{T}_{\mathscr{S}}$ that $\mathscr{T}_{\text {std }} \subset \mathscr{T}_{\mathscr{F}}$. Let A be the arc constructed in Theorem 4. $A-\{0\}$ is not a standard closed subset of \mathbb{R}^{n}. However, Theorem 4 implies that $A-\{0\}$ is a closed subset of \mathbb{R}^{n} with respect to the topology \mathscr{T}_{y}. So $\left(\mathbb{R}^{n}-A\right) \cup\{0\} \notin$ $\mathscr{T}_{\text {std }}$, but $\left(\mathbb{R}^{n}-A\right) \cup\{0\} \in \mathscr{T}_{\mathscr{P}}$. Therefore, $\mathscr{T}_{\mathscr{S}}$ is strictly larger than $\mathscr{T}_{\text {std }}$.

Since \boldsymbol{A} is a tame arc, there is a (standard) homeomorphism $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $h(A)$ is a straight line segment. Thus, $h \in \mathscr{H}_{\text {std }}$. Since every straight line in \mathbb{R}^{n} is a smooth set, and every subset of a smooth set is smooth, then $h(A) \in \mathscr{F}$. Hence, $\mathscr{T}_{\mathscr{F}}$ restricts to the standard topology on $h(A)$. With respect to the standard topology on $h(A), h(0)$ is a limit point of $h(A-\{0\})$. So $h(A-\{0\})$ is not a closed subset of $h(A)$ with respect to either $\mathscr{T}_{\text {std }}$ or $\mathscr{T}_{\mathscr{P}}$. Consequently, with respect to $\mathscr{T}_{\mathscr{P}}, A-\{0\}$ is a closed subset of \mathbb{R}^{n} but $h(A-\{0\})$ is not. We conclude that $h \notin \mathscr{H}_{y}$. This proves $\mathscr{H}_{y} \neq \mathscr{H}_{\text {std }}$.

Before proving $\mathscr{H}_{f} \subset \mathscr{H}_{\text {std }}$, we make two observations. Let $h \in \mathscr{H}_{\mathscr{S}}$.
(1) If $S \in \mathscr{S}$, then $h \mid S: S \rightarrow \mathbb{R}^{n}$ is continuous (in the standard sense).
(2) If U is a connected open subset of \mathbb{R}^{n}, then $h(U)$ is connected.
(1) follows because $\mathscr{T}_{\mathscr{G}}$ restricts to the standard topology on S and $\mathscr{T}_{\text {std }} \subset \mathscr{T}_{\mathscr{9}}$. (1) implies that if J is a straight line segment in \mathbb{R}^{n}, then $h(J)$ is connected. To prove (2), let x and $y \in U$. Then x and y are joined by a piecewise linear path J in U. Since h maps each straight piece of J to a connected set, then $h(J)$ is a connected subset of $h(U)$ joining $h(x)$ to $h(y)$. This proves $h(U)$ is connected.

We now prove $\mathscr{H}_{\mathscr{S}} \subset \mathscr{H}_{\text {std }}$. Let $h \in \mathscr{H}_{y}$. Suppose $U \in \mathscr{F}_{\text {std }}$. We will prove $h(U) \in$ $\mathscr{T}_{\text {std }}$. Let $x \in U$. Choose $r>0$ so that $\left\{y \in \mathbb{R}^{n}:|x-y| \leqslant r\right\} \subset U$. Let $S=$ $\left\{y \in \mathbb{R}^{n}:|x-y|=r\right\}$, let $V=\left\{y \in \mathbb{R}^{n}:|x-y|<r\right\}$ and let $W=\left\{y \in \mathbb{R}^{n}:|x-y|>r\right\}$. Since S is a compact smooth set, then observation (1) implies $h \mid S$ is an embedding. So $h(S)$ is an ($n-1$)-sphere in \mathbb{R}^{n}. The Jordan Separation Theorem now implies that
$\mathbb{R}^{n}-h(S)$ has precisely two components. Moreover, these components are open subsets of \mathbb{R}^{n}. Observation (2) implies that $h(V)$ and $h(W)$ are connected. Also, since $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a bijection, then $\mathbb{R}^{n}-h(S)=h(V) \cup h(W)$ and $h(V) \cap h(W)=\emptyset$. It follows that $h(V)$ and $h(W)$ are the two components of $\mathbb{R}^{n}-h(S)$. Hence, $h(V)$ is an open subset of \mathbb{R}^{n} such that $h(x) \in h(V) \subset h(U)$. This proves $h(U) \in \mathscr{T}_{\text {std }}$. We can similarly prove that if $U \in \mathscr{T}_{\text {std }}$, then $h^{-1}(U) \in \mathscr{T}_{\text {std }}$. It follows that $h \in \mathscr{H}_{\text {std }}$. We have now proved that $\mathscr{H}_{\mathscr{F}} \subset \mathscr{H}_{\text {std }}$.

We conclude that \mathscr{H}_{5} is strictly smaller than $\mathscr{H}_{\text {std }}$.

5. The proof of Theorem 3

We refer the reader to $[2$, Section 4] for a 2 -dimensional version of this construction.

Let A be the tame arc and V the open set in \mathbb{R}^{n} constructed in Theorem 4 . For each $p \in \mathbb{R}^{n}$, let $A(p)=A+p=\{x+p: x \in A\}$ and let $V(p)=V+p=\{x+p: x \in V\}$. Since translation takes smooth sets to smooth sets, it follows that if S is a smooth set and $p \in S$, then $p \notin \operatorname{cl}(S \cap V(p))$.

The desired function $f: \mathbb{R}^{\prime \prime} \rightarrow \mathbb{R}^{n}$ arises as a composition $f=g \circ h$ where $g, h: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{n} are functions satisfying the following four conditions.
(1) Y is a countable dense subset of \mathbb{R}^{n}.
(2) $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an injective function which is discontinuous at each point of Y and continuous at each point of $\mathbb{R}^{n}-Y$.
(3) For each $y \in Y$, there is an open subset $W(y)$ of \mathbb{R}^{n} such that if $\left\{w_{k}\right\}$ is a sequence in $\mathbb{R}^{n}-W(y)$ that converges to y, then $\left\{g\left(w_{k}\right)\right\}$ converges to $g(y)$.
(4) $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a homeomorphism such that for each $y \in Y, h\left(V\left(h^{-1}(y)\right)\right)$ contains $W(y)$.

Assume for the moment that we have functions $g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfying conditions (1)-(4). Set $Z=h^{-1}(Y)$ and $f=g \circ h$. Then clearly Z is a countable dense subset of \mathbb{R}^{n}, and f is an injective function which is discontinuous at each point of Z and continuous at each point of $\mathbb{R}^{n}-Z$. Let S be a smooth subset of \mathbb{R}^{n}. Clearly, $f \mid S$ is continuous at each point of $S-Z$. Suppose $z \in S \cap Z$. Let $\left\{w_{k}\right\}$ be a sequence in S that converges to z. Since $z \notin \operatorname{cl}(S \cap V(z))$, then we can assume that $\left\{w_{k}\right\}$ avoids $V(z)$. Now, $h(z) \in Y$, and $\left\{h\left(w_{k}\right)\right\}$ converges to $h(z)$ and avoids $W(h(z))$. So, by condition (3), $\left\{g\left(h\left(w_{k}\right)\right)\right\}$ converges to $g(h(z))$. Hence, $\left\{f\left(w_{k}\right)\right\}$ converges to $f(z)$. This proves $f \mid S$ is continuous at z. We conclude that $f \mid S$ is continuous. It remains to construct the functions g and h.

We now construct g. Let $\left\{x_{i}: i \geqslant 1\right\}$ be a countable dense subset of $\mathbb{R}^{\prime \prime}$. Let $v \in \mathbb{R}^{n}$ such that $|v|=1$ and $v \neq\left(x_{i}-x_{j}\right) /\left|x_{i}-x_{j}\right|$ for all $i \neq j$. For each $i \geqslant 1$, define $C_{i}=$ $\left\{x_{i}+t v:-1 / i \leqslant t \leqslant 0\right\}, D_{i}=\left\{x_{i}+t v: 0 \leqslant t \leqslant 1 / i\right\}, E_{i}=\left\{x_{i}+t v: 1 / i \leqslant t \leqslant 2 / i\right\}$, and $F_{i}=$ $C_{i} \cup D_{i} \cup E_{i}$. Then the collection $\mathscr{D}=\left\{D_{i}: i \geqslant 1\right\} \cup\left\{\{x\}: x \in \mathbb{R}^{n}-\bigcup_{i \geqslant 1} D_{i}\right\}$ is an upper semicontinuous decomposition of \mathbb{R}^{n} into a null sequence of tame arcs and points. Hence, \mathscr{D} is shrinkable [3, p. 56]. So there is a closed onto map $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $\left\{\pi^{-1}(x): x \in \mathbb{R}^{n}\right\}=\mathscr{D}$.

Let $i \geqslant 1$. Note that $\pi\left(F_{i}\right)$ is an arc. We will prove that $\pi\left(F_{i}\right)$ is tame. First, observe that the decomposition $\mathscr{E}=\left\{D_{j}: i \neq j \geqslant 1\right\} \cup\left\{\{x\}: x \in \mathbb{R}^{n}-\bigcup_{i \neq j \geqslant 1} D_{j}\right\}$ is strongly shrinkable [3, p. 56]. Hence, there is a closed onto map $\rho: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $\left\{\rho^{-1}(x): x \in \mathbb{R}^{n}\right\}=\mathscr{E}$ and $\rho \mid F_{i}=\mathrm{id}$. Also, clearly, there is a closed onto map $\sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $\sigma\left(D_{i}\right)=\left\{x_{i}\right\}, \sigma\left(F_{i}\right)-F_{i}$, and $\left\{\sigma^{-1}(x): x \in \mathbb{R}^{n}\right\}-\left\{D_{i}\right\} \cup\left\{\{x\}: x \subset \mathbb{R}^{n}-D_{i}\right\}$. Hence, $\sigma \circ \rho: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a closed onto map such that $\left\{(\sigma \circ \rho)^{-1}(x): x \in \mathbb{R}^{n}\right\}=\mathscr{D}$ and $\sigma \circ \rho\left(F_{i}\right)=F_{i}$. Since, $\left\{\pi^{-1}(x): x \in \mathbb{R}^{n}\right\}=\left\{(\sigma \circ \rho)^{-1}(x): x \in \mathbb{R}^{n}\right\}$, then there is a homeomorphism $\tau: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $\tau \circ \pi=\sigma \circ \rho$. So $\tau\left(\pi\left(F_{i}\right)\right)=\sigma \circ \rho\left(F_{i}\right)=F_{i}$. This proves $\pi\left(F_{i}\right)$ is tame.

For each $i \geqslant 1$, set $y_{i}=\pi\left(D_{i}\right)=\pi\left(x_{i}\right)$, and set $Y=\left\{y_{i}: i \geqslant 1\right\}$. Since $\left\{x_{i}: i \geqslant 1\right\}$ is dense in \mathbb{R}^{n}, then so is Y. Define $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $g(x)=\pi^{-1}(x)$ if $x \in \mathbb{R}^{n}-Y$ and $g\left(y_{i}\right)=x_{i}$ for $i \geqslant 1$. Then $\pi \circ g=$ id. So g is injective.
To prove that g is continuous at each $x \in \mathbb{R}^{n}-Y$, let N be a neighborhood of $g(x)=\pi^{-1}(x)$ in \mathbb{R}^{n}. Since π is a closed map, there is a neighborhood M of x in \mathbb{R}^{n} such that $\pi^{-1}(M) \subset N$. Since $g(M) \subset \pi^{-1}(M)$, then $g(M) \subset N$.

To prove that for each $i \geqslant 1, g$ is discontinuous at y_{i}, fix $i \geqslant 1$, and set $w_{k}=$ $\pi\left(x_{i}+(1 / i+1 / k) v\right)$ for each $k \geqslant 1$. Then $\left\{w_{k}\right\}$ is a sequence in $\mathbb{R}^{n}-Y$ that converges to $\pi\left(x_{i}+(1 / i) v\right)=y_{i}$. However, $\left\{g\left(w_{k}\right)\right\}$ does not converge to $g\left(y_{i}\right)$, because $\left\{g\left(w_{k}\right)\right\}$ converges to $x_{i}+(1 / i) v$ and $g\left(y_{i}\right)=x_{i}$.
We remark that at this point we have verified the first two of conditions (1)-(4) stated at the beginning of this proof.

Next, for each $i \geqslant 1$, we find an open subset P_{i} of \mathbb{R}^{n} such that
(5) $\pi\left(E_{i}\right)-\left\{y_{i}\right\} \subset P_{i}$,
(6) $\operatorname{cl}\left(P_{i}\right) \cap \pi\left(C_{i}\right)-\left\{y_{i}\right\}$, and
(7) if $\left\{w_{k}\right\}$ is a sequence in $\mathbb{R}^{n}-P_{i}$ that converges to y_{i}, then $\left\{g\left(w_{k}\right)\right\}$ converges to $g\left(y_{i}\right)$.
Fix $i \geqslant 1$. If U is an open subset of \mathbb{R}^{n}, let $U^{*}=\bigcup\{D \in \mathscr{D}: D \subset U\}$; then U^{*} and $\pi\left(U^{*}\right)$ are open subsets of \mathbb{R}^{n}, because π is a closed map. Let Q and R be open subsets of \mathbb{R}^{n} such that $C_{i}-\left\{x_{i}\right\} \subset Q,\left(D_{i} \cup E_{i}\right)-\left\{x_{i}\right\} \subset R$, and $Q \cap R=\emptyset$. Then Q^{*} and R^{*} are open subsets of \mathbb{R}^{n} such that $C_{i}-\left\{x_{i}\right\} \subset Q^{*}$ and $E_{i}-\left\{x_{i}+(1 / i) v\right\} \subset R^{*}$. It follows that $\pi\left(Q^{*}\right)$ and $\pi\left(R^{*}\right)$ are disjoint open subsets of \mathbb{R}^{n} such that $\pi\left(C_{i}\right)-$ $\left\{y_{i}\right\} \subset \pi\left(Q^{*}\right)$ and $\pi\left(E_{i}\right)-\left\{y_{i}\right\} \subset \pi\left(R^{*}\right)$. Consequently, $\pi\left(C_{i}\right) \cap \operatorname{cl}\left(\pi\left(R^{*}\right)\right)=\left\{y_{i}\right\}$. Set $P_{i}=\pi\left(R^{*}\right)$. Then P_{i} is an open subset of \mathbb{R}^{n} such that $\pi\left(E_{i}\right)-\left\{y_{i}\right\} \subset P_{i}$ and $\operatorname{cl}\left(P_{i}\right) \cap$ $\pi\left(C_{i}\right)=\left\{y_{i}\right\}$.
Suppose $\left\{w_{k}\right\}$ is a sequence in $\mathbb{R}^{n}-P_{i}$ that converges to y_{i}. We must prove that $\left\{g\left(w_{k}\right)\right\}$ converges to $g\left(y_{i}\right)=x_{i}$. Let N be a neighborhood of x_{i} in \mathbb{R}^{n}. The collection $\mathscr{E}=\left\{D_{j}: i \neq j \geqslant 1\right\} \cup\left\{\{x\}: x \in \mathbb{R}^{n}-\bigcup_{i \neq j \geqslant 1} D_{j}\right\}$ is an upper semicontinuous decomposition of \mathbb{R}^{n}. If U is an open subset of \mathbb{R}^{n}, set $U^{*}=\bigcup\{E \in \mathscr{E}: E \subset U\}$; then U^{*} is an open subset of $\mathbb{R}^{n} . D_{i}-\left\{x_{i}\right\} \subset R^{*}$, because $D_{i}-\left\{x_{i}\right\} \subset R$; and $x_{i} \in N^{\#}$. So $N^{\#} \cup R^{*}$ is a neighborhood of $D_{i}=\pi^{-1}\left(y_{i}\right)$ in \mathbb{R}^{n}. Since π is a closed map, there is a ncighborhood M of y_{i} in \mathbb{R}^{n} such that $\pi^{-1}(M) \subset N^{*} \cup Q^{*}$. Since $\left\{w_{k}\right\}$ converges to y_{i}, then there is a $K \geqslant 1$ such that $w_{k} \in M$ for $k \geqslant K$. Let $k \geqslant K$. If $w_{k}=y_{i}$, then $g\left(w_{k}\right)=x_{i} \in N$. So suppose $w_{k} \neq y_{i}$. Then $\pi^{-1}\left(w_{k}\right) \in \mathscr{E}$. Since $w_{k} \notin P_{i}=\pi\left(R^{*}\right)$, then
$\pi^{-1}\left(w_{k}\right) \not \subset R$. So $\pi^{-1}\left(w_{k}\right) \cap R^{*}=\emptyset$. Since $\pi^{-1}\left(w_{k}\right) \subset \pi^{-1}(M) \subset N^{\#} \cup R^{\#}$, it follows that $\pi^{-1}\left(w_{k}\right) \subset N^{\#}$. Since $g\left(w_{k}\right) \in \pi^{-1}\left(w_{k}\right)$ and $N^{\#} \subset N$, then $g\left(w_{k}\right) \in N$. This proves $\left\{g\left(w_{k}\right)\right\}$ converges to $x_{1}=g\left(y_{i}\right)$.

Observe that property (7) implies that if $i \geqslant 1, M$ is a neighborhood of y_{i} in \mathbb{R}^{n}, and $\left\{w_{k}\right\}$ is a sequence in $\mathbb{R}^{n}-\left(P_{i} \cap \boldsymbol{M}\right)$ that converges to y_{i}, then $\left\{g\left(w_{k}\right)\right\}$ converges to $g\left(y_{i}\right)$.

Recall that A is the tame arc and V is the open set in \mathbb{R}^{n} provided by Theorem 4,0 is an endpoint of A, and $A-\{0\} \subset V$. Let V^{\prime} be an open subset of \mathbb{R}^{n} such that $A-\{0\} \subset V^{\prime}$ and $\mathrm{cl} V^{\prime} \subset\{0\} \cup V$. For each $p \in \mathbb{R}^{n}$, let $V^{\prime}(p)=V^{\prime}+p=\left\{x+p: x \in V^{\prime}\right\}$.

We obtain the homeomorphism h of \mathbb{R}^{n} as the limit of a sequence $\left\{h_{i}\right\}$ of homeomorphisms of \mathbb{R}^{n}. The sequence $\left\{h_{i}\right\}$ together with a sequence $\left\{M_{i}\right\}$ of open subsets of \mathbb{R}^{n} are constructed inductively to satisfy the following four conditions.
(8) For each $x \in \mathbb{R}^{n},\left|h_{i}(x)-h_{i+1}(x)\right|<2^{-i}$ and $\left|h_{i}^{-1}(x)-h_{i+1}^{-1}(x)\right|<2^{-i}$.
(9) For each $j \geqslant i, h_{j}^{-1}\left(y_{i}\right)=h_{i}^{-1}\left(y_{i}\right)$.
(10) $y_{i} \in M_{i}$.
(11) For each $j \geqslant i, h_{j}\left(V^{\prime}\left(h_{i}{ }^{\prime}\left(y_{i}\right)\right)\right)$ contains $\operatorname{cl}\left(P_{i} \cap M_{i}\right)-\left\{y_{i}\right\}$.

Assume for the moment that we have $\left\{h_{i}\right\}$ and $\left\{M_{i}\right\}$ satisfying conditions (8)-(11). Then condition (8) guarantees that $\left\{h_{i}\right\}$ converges uniformly to a map $h: \mathbb{R}^{n} \rightarrow \mathbb{B}^{n}$. Moreover, h is a homeomorphism, because the second inequality in (8) implies that $\left\{h_{i}^{-1}\right\}$ converges uniformly to h^{-1}. Next we verify conditions (3) and (4) (stated at the beginning of this proof). Condition (9) implies that $h^{-1}\left(y_{i}\right)=h_{i}^{-1}\left(y_{i}\right)$ for $i \geqslant 1$. For each $i \geqslant 1$, let $W\left(y_{i}\right)-P_{i} \cap M_{i}$. Now for each $i \geqslant 1$, property (7) implies that if $\left\{w_{k}\right\}$ is a sequence in $\mathbb{R}^{n}-W\left(y_{i}\right)$ that converges to y_{i}, then $\left\{g\left(w_{k}\right)\right\}$ converges to $g\left(y_{i}\right)$. Condition (11) and the observation that $h^{-1}\left(y_{i}\right)=h_{i}^{-1}\left(y_{i}\right)$ imply that $h_{j}^{-1}\left(P_{i} \cap M_{i}\right) \subset V^{\prime}\left(h^{-1}\left(y_{i}\right)\right)$ for $j \geqslant i$. Since $\left\{h_{j}^{-1}\right\}$ converges to h^{-1}, we deduce that $h^{-1}\left(P_{i} \cap M_{i}\right) \subset \operatorname{cl}\left(V^{\prime}\left(h^{-1}\left(y_{i}\right)\right)\right)$. Since $\operatorname{cl}\left(V^{\prime}\left(h^{-1}\left(y_{i}\right)\right)\right) \subset\left\{h^{-1}\left(y_{i}\right)\right\} \cup V\left(h^{-1}\left(y_{i}\right)\right)$ and $y_{i} \notin P_{i}$, then $h^{-1}\left(P_{i} \cap M_{i}\right) \subset V\left(h^{-1}\left(y_{i}\right)\right)$. We conclude that $h\left(V\left(h^{-1}\left(y_{i}\right)\right)\right)$ contains $W\left(y_{i}\right)$.

It remains to construct $\left\{h_{i}\right\}$ and $\left\{M_{i}\right\}$. We begin this construction by setting $h_{0}=\mathbf{i d}_{\mathbb{R}^{n}}$ and $M_{0}=\emptyset$. Let $i \geqslant 1$, and inductively assume we have h_{j} and M_{j} for $0 \leqslant j<i$. Set $z=h_{i-1}^{-1}\left(y_{i}\right)$. Choose a neighborhood N of z in \mathbb{R}^{n} such that $h_{i-1}^{-1}\left(y_{j}\right) \notin N$ for $1 \leqslant j<i$, $\operatorname{diam} N<2^{-i}$ and $\operatorname{diam} h_{i-1}(N)<2^{-i}$, and such that for $1 \leqslant j<i$, if N intersects $h_{i-1}^{-1}\left(\mathrm{cl}\left(P_{j} \cap M_{j}\right)\right)$, then $N \subset V^{\prime}\left(h_{i-1}^{-1}\left(y_{j}\right)\right)$. Now recall that $A(z)$ and $h_{i-1}^{-1}\left(\pi\left(F_{i}\right)\right)=h_{i-1}^{-1}\left(\pi\left(C_{i}\right)\right) \cup h_{i-1}^{-1}\left(\pi\left(E_{i}\right)\right)$ are tame arcs and z is an endpoint of $A(z)$, $h_{i-1}^{-1}\left(\pi\left(C_{i}\right)\right)$, and $h_{i-1}^{-1}\left(\pi\left(E_{i}\right)\right)$. Hence, there is a homeomorphism τ_{1} of \mathbb{R}^{n} which fixes z and takes $A(z)$ onto $h_{i-1}^{-1}\left(\pi\left(E_{i}\right)\right)$. Using the Annulus Theorem ($[8,5]$ for dimension 3, [9] for dimension 4, and [6] for dimensions $\geqslant 5$), we can find a homeomorphism τ_{2} of \mathbb{R}^{n} which agrees with τ_{1} on a small ball neighborhood of z and is the identity outside a larger ball neighborhood of z. Hence, we can assume there is a neighborhood N^{\prime} of z contained in N such that $\tau_{2}(A(z)) \supset h_{i-1}^{-1}\left(\pi\left(E_{i}\right)\right) \cap N^{\prime}$ and $\tau_{2}=$ id outside N. Hence, $h_{i-1}^{-1}\left(\pi\left(E_{i}\right)\right) \cap N^{\prime} \subset\{z\} \cup \tau_{2}\left(V^{\prime}(z)\right)$. Also $h_{i-1}^{-1}\left(\pi\left(E_{i}\right)\right) \subset$ $\{z\} \cup h_{i-1}^{-1}\left(P_{i}\right)$ and $\operatorname{cl}\left(h_{i-1}^{-1}\left(P_{i}\right)\right) \cap h_{i-1}^{-1}\left(\pi\left(C_{i}\right)\right)=\{z\}$. Thinking of the tame arc $h_{i-1}^{-1}\left(\pi\left(F_{i}\right)\right)$ as a straight line segment, we see that there is a homeomorphism τ_{3}
of \mathbb{R}^{n} which moves points away from $h_{i-1}^{-1}\left(\pi\left(C_{i}\right)\right)$ toward $h_{i-1}^{-1}\left(\pi\left(E_{i}\right)\right)$ and takes each round sphere centered at z onto itself such that
(12) there is a neighborhood $N^{\prime \prime}$ of z in N^{\prime} such that $\tau_{3}\left(\operatorname{cl}\left(h_{i-1}^{-1}\left(P_{i}\right)\right) \cap N^{\prime \prime}\right) \subset\{z\} \cup$ $\tau_{2}\left(V^{\prime}(z)\right)$,
(13) $\tau_{3}(z)=z$, and
(14) $\tau_{3}=$ id outside N.

Then $\tau_{3}^{-1}(z)=z, \tau_{3}^{-1}=$ id outside N, and $\{z\} \cup \tau_{3}^{-1} \circ \tau_{2}\left(V^{\prime}(z)\right)$ contains $\operatorname{cl}\left(h_{i-1}^{-1}\left(P_{i}\right)\right) \cap$ $N^{\prime \prime}$. Choose a neighborhood M_{i} of y_{i} such that $\operatorname{cl}\left(h_{i-1}^{-1}\left(M_{i}\right)\right) \subset N^{\prime \prime}$. Then $\tau_{3}^{-1} \circ \tau_{2}\left(V^{\prime}(z)\right)$ contains $h_{i-1}^{-1}\left(\operatorname{cl}\left(P_{i} \cap M_{i}\right)-\left\{y_{i}\right\}\right)$. Define the homeomorphism h_{i} of \mathbb{R}^{n} by $h_{i}=h_{i-1} \circ \tau_{3}^{-1} \circ \tau_{2}$. The properties of N together with the fact that $\tau_{3}^{-1} \circ \tau_{2}$ is supported on N imply that h_{i} satisfies conditions (8) and (9) and that $h_{i}\left(V^{\prime}\left(h_{j}^{-1}\left(y_{j}\right)\right)\right.$) contains $\operatorname{cl}\left(P_{j} \cap M_{j}\right)-\left\{y_{j}\right\}$ for $1 \leqslant j<i$. Also, τ_{2} and τ_{3} have obviously been chosen to insure that $h_{i}\left(V^{\prime}\left(h_{i}^{-1}\left(y_{i}\right)\right)\right)$ contains $\operatorname{cl}\left(P_{i} \cap M_{i}\right)-\left\{y_{i}\right\}$. So h_{i} satisfies condition (11).

6. Questions

Let \mathscr{F} be the collection of all smooth subsets of \mathbb{R}^{n}.
(1) What are the topological properties of \mathbb{R}^{n} with the topology $\mathscr{T}_{\mathscr{F}}$? For instance, is it regular? normal? paracompact? first countable? second countable? separable? locally compact? connected? locally connected? contractible? locally contractible? What is its dimension?

The second question is a reformulation of questions (1) and (2) of [2].
(2) Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an injective function whose restriction to each smooth subset of \mathbb{R}^{n} is continuous. Let $Z=\left\{x \in \mathbb{R}^{n}: f\right.$ is discontinuous at $\left.x\right\}$.
(a) Can Z be uncountable?
(b) Can Z be a (tame) Cantor set?
(c) Can $\operatorname{dim} Z>0$?

Appendix

First we prove that if $1 \leqslant k<n$ and M is a C^{2} regular k-manifold in \mathbb{R}^{n}, then M is a smooth set. Let $p \in M$. Then there is a C^{2} diffeomorphism $\psi: U \rightarrow V$ from a neighborhood U of p in \mathbb{R}^{n} to an open subset V of $\mathbb{R}^{k} \times \mathbb{R}^{n-k}$ such that $\psi(M \cap U)=$ $\left(\mathbb{R}^{k} \times\{0\}\right) \cap V\left[4\right.$, p. 215]. Define $\pi: \mathbb{R}^{k} \times \mathbb{R}^{n-k} \rightarrow \mathbb{R}$ by $\pi\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n-k}\right)=$ y_{1}. Then $\pi \circ \psi: U \rightarrow \mathbb{R}$ is a C^{2} map such that $M \cap U \subset(\pi \circ \psi)^{-1}(0)$. Also, for each $q \in U$, since $(\pi \circ \psi)^{\prime}(q)=\pi^{\prime}(\psi(q)) \cdot \psi^{\prime}(q), \psi^{\prime}(q)$ is rank n and $\pi^{\prime}(\psi(q))$ is rank 1 , then $(\pi \circ \psi)^{\prime}(q)$ is rank 1 ; so $\pi \circ \psi$ has a nonzero first order partial derivative at q.

Second, we indicate how the version of Taylor's formula given in Section 2 is derived from the following version which is commonly found in advanced calculus texts. Let $r \geqslant 1$, let U be an open subset of \mathbb{R}^{n}, let $f: U \rightarrow \mathbb{R}$ be a C^{r+1} map, and let
$p \in U$. If $x \in \mathbb{R}^{n}$ such that U contains the straight line segment from p to $p+x$, then there is a $\theta \in(0,1)$ such that

$$
f(p+x)=\sum_{k=0}^{r} \frac{1}{k!} D^{k} f(p)(x, \ldots, x)+\frac{1}{(r+1)!} D^{r+1} f(p+\theta x)(x, \ldots, x)
$$

[7, p. 179]. Here $D^{k} f(p):\left(\mathbb{R}^{n}\right)^{k} \rightarrow \mathbb{R}$ is the symmetric multilinear function

$$
D^{k} f(p)\left(v^{1}, \ldots, v^{k}\right)=\sum_{\substack{1 \leqslant i_{j} \leqslant n \\ 1 \leqslant j \leqslant k}} \frac{\partial^{k} f}{\partial x_{i_{1}}, \ldots, \partial x_{i_{k}}}(p) v_{i_{1}}^{1} \ldots v_{i_{k}}^{k}
$$

where $v^{j}=\left(v_{1}^{j}, \ldots, v_{n}^{j}\right) \in \mathbb{R}^{n}$ for $1 \leqslant j \leqslant k$. Since $D^{k} f(p)$ is symmetric, then by combining like terms, $D^{k}(p)(x, \ldots, x)$ can be simplified to

$$
\sum_{\substack{a \in \omega^{n} \\\|a\|=k}} \frac{k!}{a!} f^{(a)}(p) x^{a}
$$

Substituting this expression for $D^{k} f(p)(x, \ldots, x)$ in the above version of Taylor's formula yields the version of Taylor's formula given in Section 2.

References

[1] F.D. Ancel, Collections of paths and rays in the plane which fix its topology, Topology Appl. 15 (1983) 99-110.
[2] D.W. Curtis and L.R. Rubin, Sectionally continuous injections of Euclidean spaces, Topology Appl. 31 (1989) 159-168.
[3] R.J. Daverman, Decompositions of Manifolds (Academic Press, New York, 1986).
[4] M. Hirsch, Differential Topology (Springer, New York, 1976).
[5] R.C. Kirby, On the annulus conjecture, Proc. Amer. Math. Soc. 17 (1966) 178-185.
[6] R.C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. 89 (1969) 575-582.
[7] J.E. Marsden, Elementary Classical Analysis (Freeman, San Francisco, CA, 1974).
[8] E.E. Moise, Affine structures in 3-manifolds. V: The triangulation theorem and the Hauptvermutung, Ann. of Math. 56 (1952) 96-114.
[9] F. Quinn, Ends of maps, III: dimensions 4 and 5, J. Differential Geom. 17 (1982) 503-521.

