Topologies on \mathbb{R}^n induced by smooth subsets

Fredric D. Ancel

Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA

Received 22 January 1990 Revised 17 September 1990 and 22 October 1990

Abstract

Ancel, F.D., Topologies on \mathbb{R}^n induced by smooth subsets, Topology and its Applications 43 (1992) 189-201.

If \mathscr{S} is a collection of subsets of \mathbb{R}^n , let $\mathcal{T}_{\mathscr{S}}$ denote the largest topology on \mathbb{R}^n which restricts to the standard topology on each element of \mathscr{S} , and let $\mathscr{H}_{\mathscr{S}}$ denote the homeomorphism group of \mathbb{R}^n with the topology $\mathcal{T}_{\mathscr{S}}$. Let \mathcal{T}_{std} denote the standard topology on \mathbb{R}^n and let \mathscr{H}_{std} denote the homeomorphism group of \mathbb{R}^n with the standard topology.

Theorem 1. If \mathscr{G} is any collection of subsets of \mathbb{R}^n which contains all C^1 regular 1-manifolds, then $\mathscr{T}_{\mathscr{G}} = \mathscr{T}_{std}$.

A natural collection of subsets of \mathbb{R}^n called *smooth* sets is defined which includes the zero set of every nonconstant polynomial and every C^2 regular submanifold of \mathbb{R}^n of dimension $\leq n$.

Theorem 2. If \mathscr{S} is the collection of all smooth subsets of \mathbb{R}^n , then $\mathcal{T}_{\mathscr{S}}$ is strictly larger than \mathcal{T}_{std} and $\mathscr{H}_{\mathscr{S}}$ is strictly smaller than \mathscr{H}_{std} .

Theorem 3. There is an injective function $f : \mathbb{R}^n \to \mathbb{R}^n$ which is discontinuous at each point of a countable dense subset of \mathbb{R}^n , and whose restriction to each smooth subset of \mathbb{R}^n is continuous.

Keywords: C^{1} 1-manifolds, smooth sets, induced topologies, induced homeomorphism groups, Taylor's formula.

AMS (MOS) Subj. Class.: Primary 54A10; secondary 26B05, 54C99, 57N15.

1. Introduction

At the 1988 Spring Topology Conference in Gainesville, FL, Otto Laback, a physicist from Graz Technical University in Graz, Austria, posed the following question. Given that we can directly observe only certain subsets of \mathbb{R}^n (such as smoothly embedded 1-manifolds corresponding to particle paths), what possibly nonstandard topologies on \mathbb{R}^n are compatible with the usual topology on physically observable subsets? He also wondered how the homeomorphism group of \mathbb{R}^n with such a nonstandard topology compares to the standard homeomorphism group. The

following definition allows us to give a precise formulation of a version of this question.

Let \mathscr{S} be a collection of subsets of \mathbb{R}^n . Define $\mathscr{T}_{\mathscr{S}}$ to be $\{U \subset \mathbb{R}^n \colon U \cap S \text{ is a relatively open subset of } S$ for each $S \in \mathscr{S}\}$. Then $\mathscr{T}_{\mathscr{S}}$ is the largest topology on \mathbb{R}^n which restricts to the standard topology on each element of \mathscr{S} . Define $\mathscr{H}_{\mathscr{S}}$ to be the homeomorphism group of \mathbb{R}^n with the topology $\mathscr{T}_{\mathscr{S}}$. Let \mathscr{T}_{std} denote the standard topology on \mathbb{R}^n , and let \mathscr{H}_{std} denote the homeomorphism group of \mathbb{R}^n with the standard topology.

We now state a version of Laback's question.

Question. For which collections \mathscr{G} of subsets of \mathbb{R}^n is $\mathscr{T}_{\mathscr{G}} = \mathscr{T}_{std}$, and is $\mathscr{H}_{\mathscr{G}} = \mathscr{H}_{std}$?

We will answer this question for two different natural choices of \mathcal{S} . To understand these choices, we need several definitions.

Let $1 \le k \le n$ and let $r \ge 1$. Suppose V is an open subset of \mathbb{R}^k and $f = (f_1, \ldots, f_n): V \to \mathbb{R}^n$ is a map. Recall that f is a C^r map if at each point of V all the partial derivatives of the f_i 's of order $\le r$ exist and are continuous. For each $x \in V$, let f'(x) denote the $n \times k$ matrix whose (i, j)th entry is the first order partial derivative $(\partial f_i/\partial x_j)(x)$. f is regular if for every $x \in V$, the $n \times k$ matrix f'(x) exists and is of rank k. f is a C^r regular embedding if f is a C^r regular topological embedding.

A subset M of \mathbb{R}^n is a C^r regular k-manifold if for each $x \in M$, there is an open subset V of \mathbb{R}^k and a C^r regular embedding $e: V \to \mathbb{R}^n$ such that e(V) is a neighborhood of x in M.

A subset S of \mathbb{R}^n is smooth if each point of S has a neighborhood U in \mathbb{R}^n with the property that there is an $r \ge 1$ and a C^{r+1} map $f: U \to \mathbb{R}$ such that $S \cap U \subset f^{-1}(0)$ and f has a nonzero partial derivative of order $\le r$ at each point of U. For example, the zero set of every nonconstant polynomial is a smooth set. Also, for $1 \le k < n$, every C^2 regular k-manifold in \mathbb{R}^n is a smooth set. A proof of this fact is sketched in the appendix.

We now formulate two theorems which answer our version of Laback's question for two choices of \mathscr{S} . In Theorem 1, \mathscr{S} is required to include a class of subsets of \mathbb{R}^n which forces $\mathcal{T}_{\mathscr{S}}$ to equal \mathcal{T}_{std} , and which is the smallest natural class with this property that the author could imagine. In Theorem 2, \mathscr{S} is chosen to be a class of subsets of \mathbb{R}^n for which $\mathcal{T}_{\mathscr{S}}$ fails to equal \mathcal{T}_{std} , and which is the largest natural class with this property that the author could imagine.

Theorem 1. If \mathscr{S} is any collection of subsets of \mathbb{R}^n which contains all C^1 regular 1-manifolds, then $\mathcal{T}_{\mathscr{S}} = \mathcal{T}_{std}$ and, hence, $\mathscr{H}_{\mathscr{S}} = \mathscr{H}_{std}$.

Theorem 2. If \mathscr{S} is the collection of all smooth subsets of \mathbb{R}^n , then $\mathscr{T}_{\mathscr{S}}$ is strictly larger than \mathscr{T}_{std} and $\mathscr{H}_{\mathscr{S}}$ is strictly smaller than \mathscr{H}_{std} .

Results similar to Theorem 1 have been obtained independently by C. Cooper in his 1990 University of Oklahoma Ph.D. thesis, and F. Gressl of Graz Technical University (unpublished).

The paper [2] investigates some related questions. The techniques developed here to prove Theorem 2 also allow us to generalize a construction in [2] and thereby to answer Question 3 of that paper. The result of our generalized construction is described in the next theorem.

Theorem 3. There is a countable dense subset Z of \mathbb{R}^n and an injective function $f: \mathbb{R}^n \to \mathbb{R}^n$ which is discontinuous at each point of Z, continuous at each point of $\mathbb{R}^n - Z$, and whose restriction to each smooth subset of \mathbb{R}^n is continuous.

Our proofs of Theorems 2 and 3 rely on the following technical theorem. Recall that an arc in \mathbb{R}^n is *tame* if there is a homeomorphism of \mathbb{R}^n which carries the arc to a straight line segment.

Theorem 4. In \mathbb{R}^n , there is a tame arc A with endpoint 0 and an open set V containing $A - \{0\}$ with the property that if S is any smooth set containing 0, then $0 \notin cl(S \cap V)$.

The reader may wish to refer to [1] where related results for \mathbb{R}^2 are obtained. In [1], a different point of view is adopted, which leads to results that are not exactly parallel to those proved here. However, there is a strong similarity between the techniques used here and in [1].

The following notation is used at several points in this paper. For $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n) \in \mathbb{R}^n$, let $x \cdot y$ denote the *dot product* of x and y, and let |x| denote the *Euclidean norm* of x; thus, $x \cdot y = \sum x_i y_i$ and $|x| = (x \cdot x)^{1/2}$.

2. The proof of Theorem 1

It follows immediately from the definition of $\mathcal{T}_{\mathscr{G}}$ that $\mathcal{T}_{std} \subset \mathcal{T}_{\mathscr{G}}$. Let $U \in \mathcal{T}_{\mathscr{G}}$. It suffices to prove that $U \in \mathcal{T}_{std}$. Assume $U \notin \mathcal{T}_{std}$. We will derive a contradiction.

Since $U \notin \mathcal{T}_{std}$, then there is a sequence $\{x_n\}$ in $\mathbb{R}^n - U$ which converges (standardly) to a point $y \in U$. No element of \mathcal{S} can contain both y and a subsequence of $\{x_n\}$. For if $y \in S \in \mathcal{S}$, then $U \cap S$ is a standard neighborhood of y in S. So any subsequence of $\{x_n\}$ that lies in S would eventually enter $U \cap S$, contradicting the fact that $\{x_n\}$ lies in $\mathbb{R}^n - U$. Now our strategy for reaching a contradiction is clear: we will construct an element of \mathcal{S} which contains y and a subsequence of $\{x_n\}$.

For each $n \ge 1$, set $u_n = (x_n - y)/|x_n - y|$. By passing to a subsequence, we can assume that $\{u_n\}$ converges to a point $v \in \mathbb{R}^n$. Clearly |v| = 1. For each $n \ge 1$, set $t_n = (x_n - y) \cdot v$. By passing to a subsequence, we can assume that $\{t_n\}$ is a sequence of positive real numbers converging to 0 such that $t_{n+1} < \frac{1}{3}t_n$ for each $n \ge 1$. For each $n \ge 1$, set $J_n = [(\frac{1}{2})t_n, (\frac{3}{2})t_n]$. Then $J_m \cap J_n = \emptyset$ for $m \ne n$. For each $n \ge 1$, set $w_n = x_n - y - t_n v$. Then $w_n \to 0$ and $w_n/t_n \to 0$.

We now define a C^1 regular embedding $\alpha : \mathbb{R} \to \mathbb{R}^n$ which passes through y and $\{x_n\}$. First let $\eta : \mathbb{R} \to [0, \infty)$ be a C^∞ map such that $\eta((-\infty, 0] \cup [1, \infty)) = \{0\}$ and

 $\eta(\frac{1}{2}) = 1$. Define $\alpha : \mathbb{R} \to \mathbb{R}^n$ by $\alpha(t) = y + tv + \sum_{n \ge 1} \eta((t/t_n) - (\frac{1}{2}))w_n$. Thus, $\alpha(t) = y + tv + \eta((t/t_n) - (\frac{1}{2}))w_n$ if $t \in J_n$ for some $n \ge 1$, and $\alpha(t) = y + tv$ otherwise. So α is straight line perturbed by a sequence of bumps.

 α passes through y and $\{x_n\}$, because $\alpha(0) = y$ and $\alpha(t_n) = x_n$ for $n \ge 1$. Clearly, α is C^{∞} except possibly at t = 0. Since η is bounded and $w_n \to 0$, then $\alpha(t) \to y = \alpha(0)$ as $t \to 0$. Hence, α is continuous at t = 0 (as well as at all other values of t). Furthermore, α is a topological embedding because $(\alpha(t) - y) \cdot v = t$ for every $t \in \mathbb{R}$. Observe that $(\alpha(t) - y)/t = v + \eta((t/t_n) - (\frac{1}{2}))(w_n/t)$ if $t \in J_n$ for some $n \ge 1$, and $(\alpha(t) - y)/t = v$ otherwise. Since η is bounded, $w_n/t \le 2w_n/t_n$ for $t \in J_n$, and $w_n/t_n \to 0$, it follows that $(\alpha(t) - y)/t \to v$ as $t \to 0$. So $\alpha'(0)$ exists and equals v. Observe that $\alpha'(t) = v + \eta'((t/t_n) - (\frac{1}{2}))(w_n/t_n)$ if $t \in J_n$ for some $n \ge 1$, and $\alpha'(t) = v$ otherwise. Since η' is bounded and $w_n/t_n \to 0$, it follows that $\alpha'(t) \to v = \alpha'(0)$ as $t \to 0$. Hence, α' is continuous at t = 0 (as well as at all other values of t). This proves α is a C^1 map. Finally, $\alpha'(t) \cdot v = v \cdot v = 1$ for each $t \in \mathbb{R}$, proving α is regular. We conclude that $\alpha : \mathbb{R} \to \mathbb{R}^n$ is a C^1 regular embedding which passes through y and $\{x_n\}$. So $\alpha(\mathbb{R})$ is a C^1 regular 1-manifold in \mathbb{R}^n .

Since $\alpha(\mathbb{R})$ is an element of \mathscr{S} which contains y and a subsequence of the original $\{x_n\}$, we have reached the desired contradiction. \Box

3. The proof of Theorem 4

Our proof of Theorem 4 uses the following notation. Set $\omega = \{0, 1, 2, ...\}$. For $a = (a_1, ..., a_n) \in \omega^n$, set $||a|| = \sum_{1 \le i \le n} a_i$ and set $a! = \prod_{1 \le i \le n} (a_i!)$. For $x = (x_1, ..., x_n) \in \mathbb{R}^n$ and $a = (a_1, ..., a_n) \in \omega^n$, set $x^a = \prod_{1 \le i \le n} x_i^{a_i}$. If X is a set, $\varphi = (\varphi_1, ..., \varphi_n): X \to \mathbb{R}^n$ is a function, and $a = (a_1, ..., a_n) \in \omega^n$, then define the function $\varphi^a: X \to \mathbb{R}$ by $\varphi^a(x) = (\varphi(x))^a = \prod_{1 \le i \le n} (\varphi_i(x))^{a_i}$ for $x \in X$. For $a = (a_1, ..., a_n) \in \omega^n$, if U is an open subset of \mathbb{R}^n and $f: U \to \mathbb{R}$ is a sufficiently differentiable map, then for every $p \in U$ set

$$f^{(a)}(p) = \frac{\partial^{\|a\|} f}{\partial x_1^{a_1} \dots \partial x_n^{a_n}}(p)$$

Let $r \ge 1$, and let U be an open subset of \mathbb{R}^n . A function $f: U \to \mathbb{R}$ is a C^r map if for each $a \in \omega^n$ with $||a|| \le r, f^{(a)}(p)$ exists for every $p \in U$ and $f^{(a)}: U \to \mathbb{R}$ is continuous. Let $C^r(U)$ denote the set of all C^r maps from U to \mathbb{R} .

Let $r \ge 1$, let U be an open subset of \mathbb{R}^n , let $f \in C^r(U)$, and let $p \in U$. The degree r Taylor polynomial of f at p is

$$T_p^r f(x) = \sum_{\substack{a \in \omega^n \\ \|a\| \le r}} \frac{1}{a!} f^{(a)}(p) x^a$$

for $x \in \mathbb{R}^n$.

Our notation allows us to state:

A version of Taylor's formula. Let $r \ge 1$, let U be an open subset of \mathbb{R}^n , let $f \in C^{r+1}(U)$, and let $p \in U$. If $x \in \mathbb{R}^n$ such that U contains the straight line segment from p to p + x, then there is a $\theta \in (0, 1)$ such that

$$f(p+x) = T_{p}^{r}f(x) + \sum_{\substack{a \in \omega^{n} \\ \|a\| = r+1}} \frac{1}{a!} f^{(a)}(p+\theta x) x^{a}.$$

In the appendix, we indicate how this formula is derived from a version of Taylor's formula commonly found in advanced calculus texts.

Observe that if $r \ge 1$, U is an open subset of \mathbb{R}^n , and $f \in C'(U)$, then f has a nonzero partial derivative of order $\le r$ at p if and only if $T_p^r f(x) \ne 0$. Using this observation, we restate the definition of *smooth*. A subset S of \mathbb{R}^n is *smooth* if each point of S has a neighborhood U in \mathbb{R}^n with the property that there is an $r \ge 1$ and an $f \in C^{r+1}(U)$ such that $S \cap U \subset f^{-1}(0)$ and $T_p^r f \ne 0$ for every $p \in U$.

Next, we define a linear order < on ω^n . For $a, b \in \omega^n$, we declare a < b if either (1)||a|| < ||b|| or (2) ||a|| = ||b|| and there is a k such that $1 \le k \le n$, $a_i = b_i$ for $1 \le i < k$, and $a_k < b_k$. We observe that < is a well ordering of ω^n , because for each $a \in \omega^n$, $\{b \in \omega^n : b < a\}$ is a finite set.

Our proof of Theorem 4 depends on the following lemma.

Lemma. There are order preserving homeomorphisms $\varphi_1, \ldots, \varphi_n: [0, 1] \rightarrow [0, 1]$ with the following property. Define the embedding $\varphi: [0, 1] \rightarrow \mathbb{R}^n$ by $\varphi = (\varphi_1, \ldots, \varphi_n)$. If $a, b \in \omega^n$ and a < b, then

$$\lim_{t\to 0}\frac{\varphi^b(t)}{\varphi^a(t)}=0.$$

Proof of Lemma. We begin by defining the homeomorphism $\psi:[0,1] \rightarrow [0,1]$ by $\psi(0) = 0$ and $\psi(t) = \ln 2/(\ln 2 - \ln t)$ for $0 < t \le 1$. By applying l'Hospital's rule to $\ln t/t^{-r}$, we find that $t^r \ln t \rightarrow 0$ as $t \rightarrow 0$ for any r > 0. It follows that for any s > 0, $t^{1/s}/\psi(t) \rightarrow 0$ as $t \rightarrow 0$. Thus, for any $s \ge 0$, $t/(\psi(t))^s \rightarrow 0$ as $t \rightarrow 0$.

Next define the homeomorphism $\psi_i:[0,1] \to [0,1]$ for each $i \ge 1$ by $\psi_1 = \psi$ and $\psi_i = \psi \circ \psi_{i-1}$ for i > 1. Then for $s \ge 0$ and $i \ge 1$, since $\psi_i(t) \to 0$ as $t \to 0$, and since $\psi_i(t)/(\psi_{i+1}(t))^s = \psi_i(t)/(\psi(\psi_i(t)))^s$, then the last line of the preceding paragraph implies that $\psi_i(t)/(\psi_{i+1}(t))^s \to 0$ as $t \to 0$.

Finally for each $i \ge 1$, define the homeomorphism $\varphi_i : [0, 1] \rightarrow [0, 1]$ by $\varphi_i(t) = t\psi_i(t)$. The embedding $\varphi : [0, 1] \rightarrow \mathbb{R}^n$ is defined by $\varphi = (\varphi_1, \ldots, \varphi_n)$. Recall that if $a = (a_1, \ldots, a_n) \in \omega^n$, then $\varphi^a : [0, 1] \rightarrow [0, 1]$ is given by

$$\varphi^{a}(t) = (\varphi_{1}(t))^{a_{1}} \cdots (\varphi_{n}(t))^{a_{n}}$$

Let $a, b \in \omega^n$ such that a < b. Then there is a finite sequence $a = c_0 < c_1 < \cdots < c_k = b$ in ω^n such that c_i is the immediate successor of c_{i-1} for $1 \le i \le k$. Since

$$\frac{\varphi^{b}(t)}{\varphi^{a}(t)} = \prod_{1 \leq i \leq k} \frac{\varphi^{c_{i}}(t)}{\varphi^{c_{i-1}}(t)},$$

then it clearly suffices to consider the situation in which b is the immediate successor of a.

There are two cases.

Case 1: ||a|| < ||b||. In this case a = (r, 0, ..., 0, 0) and b = (0, 0, ..., 0, r+1). So $\frac{\varphi^{b}(t)}{\varphi^{a}(t)} = \frac{(\varphi_{n}(t))^{r+1}}{(\varphi_{1}(t))^{r}} = (\psi_{n}(t))^{r+1} \left[\frac{t}{(\psi(t))^{r}}\right].$

It now follows from our earlier observations that $\varphi^{b}(t)/\varphi^{a}(t) \rightarrow 0$ as $t \rightarrow 0$.

Case 2: ||a|| = ||b||. In this case there is a $k, 1 \le k < n$, such that $a_i = b_i$ for $1 \le i < k, a = (a_1, \ldots, a_{k-1}, r, s, 0, \ldots, 0, 0)$ and $b = (a_1, \ldots, a_{k-1}, r+1, 0, 0, \ldots, 0, s-1)$. So

$$\frac{\varphi^{b}(t)}{\varphi^{a}(t)} = \frac{(\varphi_{k}(t))^{r+1}(\varphi_{n}(t))^{s-1}}{(\varphi_{k}(t))^{r}(\varphi_{k+1}(t))^{s}} = \left[\frac{\psi_{k}(t)}{(\psi_{k+1}(t))^{s}}\right](\psi_{n}(t))^{s-1}.$$

Again our earlier observations imply that $\varphi^{b}(t)/\varphi^{a}(t) \rightarrow 0$ as $t \rightarrow 0$.

We now prove Theorem 4. We define the arc A in \mathbb{R}^n by $A = \varphi([0, 1])$, where $\varphi:[0, 1] \to \mathbb{R}^n$ is the embedding of the preceding lemma. Then $0 = \varphi(0) \in \partial A$. To see that A is tame, observe that for $1 \le i \le n$, the homeomorphism $\varphi_i:[0, 1] \to [0, 1]$ extends to a homeomorphism $\Phi_i: \mathbb{R} \to \mathbb{R}$ such that $\Phi_i = \text{id on } (-\infty, 0] \cup [1, \infty)$. Define the homeomorphism $h: \mathbb{R}^n \to \mathbb{R}^n$ by $h(x) = (\Phi_1(x_1), \dots, \Phi_n(x_n))$ for $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, and note that h carries the straight line segment $\{(t, \dots, t): 0 \le t \le 1\}$ onto A.

For each $t \in (0, 1]$, define the neighborhood V(t) of $\varphi(t)$ in \mathbb{R}^n by

$$V(t) = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : 2^{-1}\varphi_i(t) < x_i < 2\varphi_i(t) \text{ for } 1 \leq i \leq n\}.$$

Observe that if $t \in (0, 1]$, $x = (x_1, ..., x_n) \in V(t)$, and $a \in \omega^n$, then $2^{-||a||} \varphi^a(t) < x^a < 2^{||a||} \varphi^a(t)$. Next define $V = \bigcup_{0 < t \leq 1} V(t)$. Then V is an open subset of \mathbb{R}^n containing $A - \{0\}$.

Let S be a smooth set containing 0. We shall prove that $0 \notin cl(V \cap S)$. For assume otherwise. Then there is a sequence $\{x_k\}$ in $V \cap S$ that converges to 0. For each $k \ge 1$, there is a $t_k \in (0, 1]$ such that $x_k \in V(t_k)$. It follows from the way in which the V(t) are defined that $\{t_k\}$ must converge to 0.

Since S is a smooth set and $0 \in S$, there is a neighborhood U of 0 in \mathbb{R}^n , an $r \ge 1$, and an $f \in C^{r+1}(U)$ such that $S \cap U \subset f^{-1}(0)$ and $T_p^r f \ne 0$ for every $p \in U$. We will argue that $T_0^r f = 0$, and thereby reach a contradiction.

We can assume that $\{x_k\}$ lies in U, and that for each $k \ge 1$, U contains the straight line segment from 0 to x_k . For each $k \ge 1$, $f(x_k) = 0$ because $x_k \in S \cap U$. So, for each $k \ge 1$, the Taylor formula for $f(x_k)$ takes the form

$$0 = T_0^r f(x_k) + \sum_{\substack{a \in \omega^n \\ \|a\| = r+1}} \frac{1}{a!} f^{(a)}(\theta_k x_k) (x_k)^a$$

for some $\theta_k \in (0, 1)$.

To make the right side of this formula more uniform, we define $z_{s,k} \in \mathbb{R}^n$ for $0 \le s \le r+1$ and $k \ge 1$ as follows. For $k \ge 1$, set $z_{s,k} = 0$ if $0 \le s \le r$, and set $z_{r+1,k} = \theta_k x_k$. Observe that for any fixed s between 0 and r+1, $\lim_{k\to\infty} z_{s,k} = 0$. Now the two terms on the right side of this formula can be absorbed into a single summation in which ||a|| runs from 0 to r+1. For each $k \ge 1$, we rewrite the Taylor formula for $f(x_k)$ as

$$0 = \sum_{\substack{a \in \omega^n \\ \|a\| \le r+1}} \frac{1}{a!} f^{(a)}(z_{\|a\|,k})(x_k)^a.$$

We now begin the inductive proof that $T_0^r f = 0$. The first term of $T_0^r f$ is $f^{(0)}(0) = f(0)$. f(0) = 0 because $0 \in S \cap U$. So $f^{(0)}(0) = 0$.

Next let $a \in \omega^n$ such that $0 < ||a|| \le r$, and inductively assume that if $b \in \omega^n$ and b < a, then $f^{(b)}(0) = 0$. Then for each $k \ge 1$, the Taylor formula for $f(x_k)$ takes the form

$$0 = \sum_{\substack{b \in \omega^n \\ \|b\| \le r+1 \\ a \le b}} \frac{1}{b!} f^{(b)}(z_{\|b\|,k})(x_k)^b.$$

By passing to a subsequence of $\{x_k\}$, we can assume that for each $b \in \omega^n$ with $||b|| \leq r+1$, the sequence $\{f^{(b)}(z_{||b||,k})\}$ does not take on both positive and negative values. Then for each $b \in \omega^n$ with $||b|| \leq r+1$, set $\varepsilon(b) = +1$ or -1 depending on whether $\{f^{(b)}(z_{||b||,k})\}$ is nonnegative or nonpositive.

For each $k \ge 1$, since $x_k \in V(t_k)$, then for each $b \in \omega^n$ with $||b|| \le r+1$, we have the inequality

$$2^{-\|b\|}\varphi^{b}(t_{k}) < (x_{k})^{b} < 2^{\|b\|}\varphi^{b}(t_{k}).$$

Multiplying this inequality by $f^{(b)}(z_{\|b\|,k})$ yields the inequality

$$2^{-\varepsilon(b)\|b\|} f^{(b)}(z_{\|b\|,k}) \varphi^{b}(t_{k}) \leq f^{(b)}(z_{\|b\|,k})(x_{k})^{b}$$
$$\leq 2^{\varepsilon(b)\|b\|} f^{(b)}(z_{\|b\|,k}) \varphi^{b}(t_{k})$$

Dividing the preceding inequality by b!, summing over all $b \in \omega^n$ with $||b|| \le r+1$ and $a \le b$, and recognizing the middle summation as a version of the Taylor formula for $f(x_k)$, yields the inequality

$$\sum_{\substack{b \in \omega^{n} \\ \|b\| \leq r+1 \\ a \leq b}} 2^{-\varepsilon(b)\|b\|} \frac{1}{b!} f^{(b)}(z_{\|b\|,k}) \varphi^{b}(t_{k}) \leq 0 \leq \sum_{\substack{b \in \omega^{n} \\ \|b\| \leq r+1 \\ a \leq b}} 2^{\varepsilon(b)\|b\|} \frac{1}{b!} f^{(b)}(z_{\|b\|,k}) \varphi^{b}(t_{k}).$$

We divide the preceding inequality by $\varphi^{a}(t_{k})$, to obtain

$$\sum_{\substack{b \in \omega^n \\ \|b\| \leq r+1 \\ a \leq b}} 2^{-\varepsilon(b)\|b\|} \frac{1}{b!} f^{(b)}(z_{\|b\|,k}) \frac{\varphi^b(t_k)}{\varphi^a(t_k)} \leq 0 \leq \sum_{\substack{b \in \omega^n \\ \|b\| \leq r+1 \\ a \leq b}} 2^{\varepsilon(b)\|b\|} \frac{1}{b!} f^{(b)}(z_{\|b\|,k}) \frac{\varphi^b(t_k)}{\varphi^a(t_k)}$$

F.D. Ancel

Now we let $k \to \infty$ in this inequality. Then $t_k \to 0$. So the above lemma implies that if $b \in \omega^n$, $||b|| \le r+1$, and a < b, then $\varphi^b(t_k)/\varphi^a(t_k) \to 0$. Also if $b \in \omega^n$ and $||b|| \le r+1$, then $f^{(b)}(z_{||b||,k}) \to f^{(b)}(0)$ because $z_{||b||,k} \to 0$. Thus, all the terms of the summations vanish except the b = a terms. $z_{||a||,k} = 0$ because $||a|| \le r$. So we are left with the inequality

$$2^{-\varepsilon(a)||a||} \frac{1}{a!} f^{(a)}(0) \leq 0 \leq 2^{\varepsilon(a)||a||} \frac{1}{a!} f^{(a)}(0).$$

Since $2^{\pm \varepsilon(a) \|a\|}/a! > 0$, we conclude that $f^{(a)}(0) = 0$.

It now follows inductively that $f^{(a)}(0) = 0$ for each $a \in \omega^n$ such that $||a|| \le r$. Therefore, $T_0^r f = 0$. We have now reached the contradiction we sought. We conclude that $0 \notin cl$ $(V \cap S)$. \Box

4. The proof of Theorem 2

Let \mathscr{S} denote the collection of all smooth subsets of \mathbb{R}^n . It follows immediately from the definition of $\mathscr{T}_{\mathscr{S}}$ that $\mathscr{T}_{std} \subset \mathscr{T}_{\mathscr{S}}$. Let A be the arc constructed in Theorem 4. $A - \{0\}$ is not a standard closed subset of \mathbb{R}^n . However, Theorem 4 implies that $A - \{0\}$ is a closed subset of \mathbb{R}^n with respect to the topology $\mathscr{T}_{\mathscr{S}}$. So $(\mathbb{R}^n - A) \cup \{0\} \notin$ \mathscr{T}_{std} , but $(\mathbb{R}^n - A) \cup \{0\} \in \mathscr{T}_{\mathscr{S}}$. Therefore, $\mathscr{T}_{\mathscr{S}}$ is strictly larger than \mathscr{T}_{std} .

Since A is a tame arc, there is a (standard) homeomorphism $h: \mathbb{R}^n \to \mathbb{R}^n$ such that h(A) is a straight line segment. Thus, $h \in \mathcal{H}_{std}$. Since every straight line in \mathbb{R}^n is a smooth set, and every subset of a smooth set is smooth, then $h(A) \in \mathcal{S}$. Hence, $\mathcal{T}_{\mathcal{S}}$ restricts to the standard topology on h(A). With respect to the standard topology on h(A), h(0) is a limit point of $h(A - \{0\})$. So $h(A - \{0\})$ is not a closed subset of h(A) with respect to either \mathcal{T}_{std} or $\mathcal{T}_{\mathcal{S}}$. Consequently, with respect to $\mathcal{T}_{\mathcal{S}}, A - \{0\}$ is a closed subset of \mathbb{R}^n but $h(A - \{0\})$ is not. We conclude that $h \notin \mathcal{H}_{\mathcal{S}}$. This proves $\mathcal{H}_{\mathcal{S}} \neq \mathcal{H}_{std}$.

Before proving $\mathcal{H}_{\mathcal{G}} \subset \mathcal{H}_{std}$, we make two observations. Let $h \in \mathcal{H}_{\mathcal{G}}$.

(1) If $S \in \mathcal{S}$, then $h | S : S \to \mathbb{R}^n$ is continuous (in the standard sense).

(2) If U is a connected open subset of \mathbb{R}^n , then h(U) is connected.

(1) follows because $\mathcal{T}_{\mathcal{S}}$ restricts to the standard topology on S and $\mathcal{T}_{std} \subset \mathcal{T}_{\mathcal{S}}$. (1) implies that if J is a straight line segment in \mathbb{R}^n , then h(J) is connected. To prove (2), let x and $y \in U$. Then x and y are joined by a piecewise linear path J in U. Since h maps each straight piece of J to a connected set, then h(J) is a connected subset of h(U) joining h(x) to h(y). This proves h(U) is connected.

We now prove $\mathcal{H}_{\mathcal{F}} \subset \mathcal{H}_{std}$. Let $h \in \mathcal{H}_{\mathcal{F}}$. Suppose $U \in \mathcal{T}_{std}$. We will prove $h(U) \in \mathcal{T}_{std}$. Let $x \in U$. Choose r > 0 so that $\{y \in \mathbb{R}^n : |x - y| \leq r\} \subset U$. Let $S = \{y \in \mathbb{R}^n : |x - y| = r\}$, let $V = \{y \in \mathbb{R}^n : |x - y| < r\}$ and let $W = \{y \in \mathbb{R}^n : |x - y| > r\}$. Since S is a compact smooth set, then observation (1) implies h|S is an embedding. So h(S) is an (n-1)-sphere in \mathbb{R}^n . The Jordan Separation Theorem now implies that

 $\mathbb{R}^n - h(S)$ has precisely two components. Moreover, these components are open subsets of \mathbb{R}^n . Observation (2) implies that h(V) and h(W) are connected. Also, since $h: \mathbb{R}^n \to \mathbb{R}^n$ is a bijection, then $\mathbb{R}^n - h(S) = h(V) \cup h(W)$ and $h(V) \cap h(W) = \emptyset$. It follows that h(V) and h(W) are the two components of $\mathbb{R}^n - h(S)$. Hence, h(V)is an open subset of \mathbb{R}^n such that $h(x) \in h(V) \subset h(U)$. This proves $h(U) \in \mathcal{T}_{std}$. We can similarly prove that if $U \in \mathcal{T}_{std}$, then $h^{-1}(U) \in \mathcal{T}_{std}$. It follows that $h \in \mathcal{H}_{std}$. We have now proved that $\mathcal{H}_{\mathcal{F}} \subset \mathcal{H}_{std}$.

We conclude that $\mathscr{H}_{\mathscr{F}}$ is strictly smaller than \mathscr{H}_{std} .

5. The proof of Theorem 3

We refer the reader to [2, Section 4] for a 2-dimensional version of this construction.

Let A be the tame arc and V the open set in \mathbb{R}^n constructed in Theorem 4. For each $p \in \mathbb{R}^n$, let $A(p) = A + p = \{x + p : x \in A\}$ and let $V(p) = V + p = \{x + p : x \in V\}$. Since translation takes smooth sets to smooth sets, it follows that if S is a smooth set and $p \in S$, then $p \notin cl(S \cap V(p))$.

The desired function $f: \mathbb{R}^n \to \mathbb{R}^n$ arises as a composition $f = g \circ h$ where $g, h: \mathbb{R}^n \to \mathbb{R}^n$ are functions satisfying the following four conditions.

(1) Y is a countable dense subset of \mathbb{R}^n .

(2) $g: \mathbb{R}^n \to \mathbb{R}^n$ is an injective function which is discontinuous at each point of Y and continuous at each point of $\mathbb{R}^n - Y$.

(3) For each $y \in Y$, there is an open subset W(y) of \mathbb{R}^n such that if $\{w_k\}$ is a sequence in $\mathbb{R}^n - W(y)$ that converges to y, then $\{g(w_k)\}$ converges to g(y).

(4) $h: \mathbb{R}^n \to \mathbb{R}^n$ is a homeomorphism such that for each $y \in Y$, $h(V(h^{-1}(y)))$ contains W(y).

Assume for the moment that we have functions $g, h: \mathbb{R}^n \to \mathbb{R}^n$ satisfying conditions (1)-(4). Set $Z = h^{-1}(Y)$ and $f = g \circ h$. Then clearly Z is a countable dense subset of \mathbb{R}^n , and f is an injective function which is discontinuous at each point of Z and continuous at each point of $\mathbb{R}^n - Z$. Let S be a smooth subset of \mathbb{R}^n . Clearly, f|S is continuous at each point of S - Z. Suppose $z \in S \cap Z$. Let $\{w_k\}$ be a sequence in S that converges to z. Since $z \notin cl(S \cap V(z))$, then we can assume that $\{w_k\}$ avoids V(z). Now, $h(z) \in Y$, and $\{h(w_k)\}$ converges to h(z) and avoids W(h(z)). So, by condition (3), $\{g(h(w_k))\}$ converges to g(h(z)). Hence, $\{f(w_k)\}$ converges to f(z). This proves f|S is continuous at z. We conclude that f|S is continuous. It remains to construct the functions g and h.

We now construct g. Let $\{x_i : i \ge 1\}$ be a countable dense subset of \mathbb{R}^n . Let $v \in \mathbb{R}^n$ such that |v| = 1 and $v \ne (x_i - x_j)/|x_i - x_j|$ for all $i \ne j$. For each $i \ge 1$, define $C_i = \{x_i + tv: -1/i \le t \le 0\}$, $D_i = \{x_i + tv: 0 \le t \le 1/i\}$, $E_i = \{x_i + tv: 1/i \le t \le 2/i\}$, and $F_i = C_i \cup D_i \cup E_i$. Then the collection $\mathcal{D} = \{D_i : i \ge 1\} \cup \{\{x\}: x \in \mathbb{R}^n - \bigcup_{i\ge 1} D_i\}$ is an upper semicontinuous decomposition of \mathbb{R}^n into a null sequence of tame arcs and points. Hence, \mathcal{D} is shrinkable [3, p. 56]. So there is a closed onto map $\pi : \mathbb{R}^n \to \mathbb{R}^n$ such that $\{\pi^{-1}(x): x \in \mathbb{R}^n\} = \mathcal{D}$. F.D. Ancel

Let $i \ge 1$. Note that $\pi(F_i)$ is an arc. We will prove that $\pi(F_i)$ is tame. First, observe that the decomposition $\mathscr{C} = \{D_j : i \ne j \ge 1\} \cup \{\{x\}: x \in \mathbb{R}^n - \bigcup_{i \ne j \ge 1} D_j\}$ is strongly shrinkable [3, p. 56]. Hence, there is a closed onto map $\rho : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $\{\rho^{-1}(x): x \in \mathbb{R}^n\} = \mathscr{C}$ and $\rho | F_i = id$. Also, clearly, there is a closed onto map $\sigma : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $\sigma(D_i) = \{x_i\}, \sigma(F_i) = F_i$, and $\{\sigma^{-1}(x): x \in \mathbb{R}^n\} = \{D_i\} \cup \{\{x\}: x \in \mathbb{R}^n - D_i\}$. Hence, $\sigma \circ \rho : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is a closed onto map such that $\{(\sigma \circ \rho)^{-1}(x): x \in \mathbb{R}^n\} = \mathscr{D}$ and $\sigma \circ \rho(F_i) = F_i$. Since, $\{\pi^{-1}(x): x \in \mathbb{R}^n\} = \{(\sigma \circ \rho)^{-1}(x): x \in \mathbb{R}^n\}$, then there is a homeomorphism $\tau : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $\tau \circ \pi = \sigma \circ \rho$. So $\tau(\pi(F_i)) = \sigma \circ \rho(F_i) = F_i$. This proves $\pi(F_i)$ is tame.

For each $i \ge 1$, set $y_i = \pi(D_i) = \pi(x_i)$, and set $Y = \{y_i : i \ge 1\}$. Since $\{x_i : i \ge 1\}$ is dense in \mathbb{R}^n , then so is Y. Define $g: \mathbb{R}^n \to \mathbb{R}^n$ by $g(x) = \pi^{-1}(x)$ if $x \in \mathbb{R}^n - Y$ and $g(y_i) = x_i$ for $i \ge 1$. Then $\pi \circ g = \text{id}$. So g is injective.

To prove that g is continuous at each $x \in \mathbb{R}^n - Y$, let N be a neighborhood of $g(x) = \pi^{-1}(x)$ in \mathbb{R}^n . Since π is a closed map, there is a neighborhood M of x in \mathbb{R}^n such that $\pi^{-1}(M) \subseteq N$. Since $g(M) \subseteq \pi^{-1}(M)$, then $g(M) \subseteq N$.

To prove that for each $i \ge 1$, g is discontinuous at y_i , fix $i \ge 1$, and set $w_k = \pi(x_i + (1/i + 1/k)v)$ for each $k \ge 1$. Then $\{w_k\}$ is a sequence in $\mathbb{R}^n - Y$ that converges to $\pi(x_i + (1/i)v) = y_i$. However, $\{g(w_k)\}$ does not converge to $g(y_i)$, because $\{g(w_k)\}$ converges to $x_i + (1/i)v$ and $g(y_i) = x_i$.

We remark that at this point we have verified the first two of conditions (1)-(4) stated at the beginning of this proof.

Next, for each $i \ge 1$, we find an open subset P_i of \mathbb{R}^n such that

- (5) $\pi(E_i) \{y_i\} \subset P_i$,
- (6) $cl(P_i) \cap \pi(C_i) = \{y_i\}, and$

(7) if $\{w_k\}$ is a sequence in $\mathbb{R}^n - P_i$ that converges to y_i , then $\{g(w_k)\}$ converges to $g(y_i)$.

Fix $i \ge 1$. If U is an open subset of \mathbb{R}^n , let $U^* = \bigcup \{D \in \mathcal{D} : D \subset U\}$; then U^* and $\pi(U^*)$ are open subsets of \mathbb{R}^n , because π is a closed map. Let Q and R be open subsets of \mathbb{R}^n such that $C_i - \{x_i\} \subset Q, (D_i \cup E_i) - \{x_i\} \subset R$, and $Q \cap R = \emptyset$. Then Q^* and R^* are open subsets of \mathbb{R}^n such that $C_i - \{x_i\} \subset Q^*$ and $E_i - \{x_i + (1/i)v\} \subset R^*$. It follows that $\pi(Q^*)$ and $\pi(R^*)$ are disjoint open subsets of \mathbb{R}^n such that $\pi(C_i) - \{y_i\} \subset \pi(Q^*)$ and $\pi(E_i) - \{y_i\} \subset \pi(R^*)$. Consequently, $\pi(C_i) \cap cl(\pi(R^*)) = \{y_i\}$. Set $P_i = \pi(R^*)$. Then P_i is an open subset of \mathbb{R}^n such that $\pi(E_i) - \{y_i\} \subset P_i$ and $cl(P_i) \cap \pi(C_i) = \{y_i\}$.

Suppose $\{w_k\}$ is a sequence in $\mathbb{R}^n - P_i$ that converges to y_i . We must prove that $\{g(w_k)\}$ converges to $g(y_i) = x_i$. Let N be a neighborhood of x_i in \mathbb{R}^n . The collection $\mathscr{E} = \{D_j : i \neq j \ge 1\} \cup \{\{x\}: x \in \mathbb{R}^n - \bigcup_{i \neq j \ge 1} D_j\}$ is an upper semicontinuous decomposition of \mathbb{R}^n . If U is an open subset of \mathbb{R}^n , set $U^{\#} = \bigcup \{E \in \mathscr{E} : E \subset U\}$; then $U^{\#}$ is an open subset of \mathbb{R}^n . $D_i - \{x_i\} \subset \mathbb{R}^*$, because $D_i - \{x_i\} \subset R$; and $x_i \in N^{\#}$. So $N^{\#} \cup \mathbb{R}^{\#}$ is a neighborhood of $D_i = \pi^{-1}(y_i)$ in \mathbb{R}^n . Since π is a closed map, there is a neighborhood M of y_i in \mathbb{R}^n such that $\pi^{-1}(M) \subset N^{\#} \cup Q^{\#}$. Since $\{w_k\}$ converges to y_i , then there is a $K \ge 1$ such that $w_k \in M$ for $k \ge K$. Let $k \ge K$. If $w_k = y_i$, then $g(w_k) = x_i \in N$. So suppose $w_k \neq y_i$. Then $\pi^{-1}(w_k) \in \mathscr{E}$. Since $w_k \notin P_i = \pi(\mathbb{R}^{\#})$, then

 $\pi^{-1}(w_k) \not\subseteq R$. So $\pi^{-1}(w_k) \cap R^{\#} = \emptyset$. Since $\pi^{-1}(w_k) \subseteq \pi^{-1}(M) \subseteq N^{\#} \cup R^{\#}$, it follows that $\pi^{-1}(w_k) \subseteq N^{\#}$. Since $g(w_k) \in \pi^{-1}(w_k)$ and $N^{\#} \subseteq N$, then $g(w_k) \in N$. This proves $\{g(w_k)\}$ converges to $x_i = g(y_i)$.

Observe that property (7) implies that if $i \ge 1$, M is a neighborhood of y_i in \mathbb{R}^n , and $\{w_k\}$ is a sequence in $\mathbb{R}^n - (P_i \cap M)$ that converges to y_i , then $\{g(w_k)\}$ converges to $g(y_i)$.

Recall that A is the tame arc and V is the open set in \mathbb{R}^n provided by Theorem 4, 0 is an endpoint of A, and $A - \{0\} \subset V$. Let V' be an open subset of \mathbb{R}^n such that $A - \{0\} \subset V'$ and cl $V' \subset \{0\} \cup V$. For each $p \in \mathbb{R}^n$, let $V'(p) = V' + p = \{x + p : x \in V'\}$.

We obtain the homeomorphism h of \mathbb{R}^n as the limit of a sequence $\{h_i\}$ of homeomorphisms of \mathbb{R}^n . The sequence $\{h_i\}$ together with a sequence $\{M_i\}$ of open subsets of \mathbb{R}^n are constructed inductively to satisfy the following four conditions.

- (8) For each $x \in \mathbb{R}^n$, $|h_i(x) h_{i+1}(x)| < 2^{-i}$ and $|h_i^{-1}(x) h_{i+1}^{-1}(x)| < 2^{-i}$.
- (9) For each $j \ge i$, $h_j^{-1}(y_i) = h_i^{-1}(y_i)$.
- (10) $y_i \in M_i$.

(11) For each $j \ge i$, $h_j(V'(h_i^{-1}(y_i)))$ contains $cl(P_i \cap M_i) - \{y_i\}$.

Assume for the moment that we have $\{h_i\}$ and $\{M_i\}$ satisfying conditions (8)-(11). Then condition (8) guarantees that $\{h_i\}$ converges uniformly to a map $h: \mathbb{R}^n \to \mathbb{R}^n$. Moreover, h is a homeomorphism, because the second inequality in (8) implies that $\{h_i^{-1}\}$ converges uniformly to h^{-1} . Next we verify conditions (3) and (4) (stated at the beginning of this proof). Condition (9) implies that $h^{-1}(y_i) = h_i^{-1}(y_i)$ for $i \ge 1$. For each $i \ge 1$, let $W(y_i) = P_i \cap M_i$. Now for each $i \ge 1$, property (7) implies that if $\{w_k\}$ is a sequence in $\mathbb{R}^n - W(y_i)$ that converges to y_i , then $\{g(w_k)\}$ converges to $g(y_i)$. Condition (11) and the observation that $h^{-1}(y_i) = h_i^{-1}(y_i)$ imply that $h_j^{-1}(P_i \cap M_i) \subset V'(h^{-1}(y_i))$ for $j \ge i$. Since $\{h_j^{-1}\}$ converges to h^{-1} , we deduce that $h^{-1}(P_i \cap M_i) \subset \operatorname{cl}(V'(h^{-1}(y_i)))$. Since $\operatorname{cl}(V'(h^{-1}(y_i))) \subset \{h^{-1}(y_i)\} \cup V(h^{-1}(y_i))$ and $y_i \notin P_i$, then $h^{-1}(P_i \cap M_i) \subset V(h^{-1}(y_i))$. We conclude that $h(V(h^{-1}(y_i)))$ contains $W(y_i)$.

It remains to construct $\{h_i\}$ and $\{M_i\}$. We begin this construction by setting $h_0 = id_{\mathbb{R}^n}$ and $M_0 = \emptyset$. Let $i \ge 1$, and inductively assume we have h_j and M_j for $0 \le j < i$. Set $z = h_{i-1}^{-1}(y_i)$. Choose a neighborhood N of z in \mathbb{R}^n such that $h_{i-1}^{-1}(y_j) \notin N$ for $1 \le j < i$, diam $N < 2^{-i}$ and diam $h_{i-1}(N) < 2^{-i}$, and such that for $1 \le j < i$, if N intersects $h_{i-1}^{-1}(\operatorname{cl}(P_j \cap M_j))$, then $N \subset V'(h_{i-1}^{-1}(y_j))$. Now recall that A(z) and $h_{i-1}^{-1}(\pi(F_i)) = h_{i-1}^{-1}(\pi(C_i)) \cup h_{i-1}^{-1}(\pi(E_i))$ are tame arcs and z is an endpoint of A(z), $h_{i-1}^{-1}(\pi(C_i))$, and $h_{i-1}^{-1}(\pi(E_i))$. Hence, there is a homeomorphism τ_1 of \mathbb{R}^n which fixes z and takes A(z) onto $h_{i-1}^{-1}(\pi(E_i))$. Using the Annulus Theorem ([8, 5] for dimension 3, [9] for dimension 4, and [6] for dimensions ≥ 5), we can find a homeomorphism τ_2 of \mathbb{R}^n which agrees with τ_1 on a small ball neighborhood of z and is the identity outside a larger ball neighborhood of z. Hence, we can assume there is a neighborhood N' of z contained in N such that $\tau_2(A(z)) \supset h_{i-1}^{-1}(\pi(E_i)) \cap N'$ and $\tau_2 = id$ outside N. Hence, $h_{i-1}^{-1}(\pi(C_i)) \cap N' \subset \{z\} \cup \tau_2(V'(z))$. Also $h_{i-1}^{-1}(\pi(E_i)) \subset \{z\} \cup h_{i-1}^{-1}(P_i)$ and $\operatorname{cl}(h_{i-1}^{-1}(P_i)) \cap h_{i-1}^{-1}(\pi(C_i)) = \{z\}$. Thinking of the tame arc $h_{i-1}^{-1}(\pi(F_i))$ as a straight line segment, we see that there is a homeomorphism τ_3

of \mathbb{R}^n which moves points away from $h_{i-1}^{-1}(\pi(C_i))$ toward $h_{i-1}^{-1}(\pi(E_i))$ and takes each round sphere centered at z onto itself such that

(12) there is a neighborhood N'' of z in N' such that $\tau_3(\operatorname{cl}(h_{i-1}^{-1}(P_i)) \cap N'') \subset \{z\} \cup \tau_2(V'(z)),$

- (13) $\tau_3(z) = z$, and
- (14) $\tau_3 = id$ outside N.

Then $\tau_3^{-1}(z) = z$, $\tau_3^{-1} = id$ outside N, and $\{z\} \cup \tau_3^{-1} \circ \tau_2(V'(z))$ contains $cl(h_{i-1}^{-1}(P_i)) \cap N''$. Choose a neighborhood M_i of y_i such that $cl(h_{i-1}^{-1}(M_i)) \subset N''$. Then $\tau_3^{-1} \circ \tau_2(V'(z))$ contains $h_{i-1}^{-1}(cl(P_i \cap M_i) - \{y_i\})$. Define the homeomorphism h_i of \mathbb{R}^n by $h_i = h_{i-1} \circ \tau_3^{-1} \circ \tau_2$. The properties of N together with the fact that $\tau_3^{-1} \circ \tau_2$ is supported on N imply that h_i satisfies conditions (8) and (9) and that $h_i(V'(h_j^{-1}(y_j)))$ contains $cl(P_j \cap M_j) - \{y_j\}$ for $1 \le j < i$. Also, τ_2 and τ_3 have obviously been chosen to insure that $h_i(V'(h_i^{-1}(y_i)))$ contains $cl(P_i \cap M_i) - \{y_i\}$. So h_i satisfies condition (11). \Box

6. Questions

Let \mathcal{S} be the collection of all smooth subsets of \mathbb{R}^n .

(1) What are the topological properties of \mathbb{R}^n with the topology $\mathcal{T}_{\mathscr{S}}$? For instance, is it regular? normal? paracompact? first countable? second countable? separable? locally compact? connected? locally connected? contractible? locally contractible? What is its dimension?

The second question is a reformulation of questions (1) and (2) of [2].

(2) Suppose $f: \mathbb{R}^n \to \mathbb{R}^n$ is an injective function whose restriction to each smooth subset of \mathbb{R}^n is continuous. Let $Z = \{x \in \mathbb{R}^n : f \text{ is discontinuous at } x\}$.

- (a) Can Z be uncountable?
- (b) Can Z be a (tame) Cantor set?
- (c) Can dim Z > 0?

Appendix

First we prove that if $1 \le k < n$ and M is a C^2 regular k-manifold in \mathbb{R}^n , then M is a smooth set. Let $p \in M$. Then there is a C^2 diffeomorphism $\psi: U \to V$ from a neighborhood U of p in \mathbb{R}^n to an open subset V of $\mathbb{R}^k \times \mathbb{R}^{n-k}$ such that $\psi(M \cap U) = (\mathbb{R}^k \times \{0\}) \cap V$ [4, p. 215]. Define $\pi: \mathbb{R}^k \times \mathbb{R}^{n-k} \to \mathbb{R}$ by $\pi(x_1, \ldots, x_k, y_1, \ldots, y_{n-k}) = y_1$. Then $\pi \circ \psi: U \to \mathbb{R}$ is a C^2 map such that $M \cap U \subset (\pi \circ \psi)^{-1}(0)$. Also, for each $q \in U$, since $(\pi \circ \psi)'(q) = \pi'(\psi(q)) \cdot \psi'(q)$, $\psi'(q)$ is rank n and $\pi'(\psi(q))$ is rank 1, then $(\pi \circ \psi)'(q)$ is rank 1; so $\pi \circ \psi$ has a nonzero first order partial derivative at q.

Second, we indicate how the version of Taylor's formula given in Section 2 is derived from the following version which is commonly found in advanced calculus texts. Let $r \ge 1$, let U be an open subset of \mathbb{R}^n , let $f: U \to \mathbb{R}$ be a C^{r+1} map, and let

 $p \in U$. If $x \in \mathbb{R}^n$ such that U contains the straight line segment from p to p + x, then there is a $\theta \in (0, 1)$ such that

$$f(p+x) = \sum_{k=0}^{r} \frac{1}{k!} D^{k} f(p)(x, \dots, x) + \frac{1}{(r+1)!} D^{r+1} f(p+\theta x)(x, \dots, x)$$

[7, p. 179]. Here $D^k f(p) : (\mathbb{R}^n)^k \to \mathbb{R}$ is the symmetric multilinear function

$$D^{k}f(p)(v^{1},\ldots,v^{k}) = \sum_{\substack{1 \leq i_{j} \leq n \\ i_{j} \leq i_{k} \leq k}} \frac{\partial^{k}f}{\partial x_{i_{1}},\ldots,\partial x_{i_{k}}}(p)v^{1}_{i_{1}}\ldots v^{k}_{i_{k}}$$

where $v^j = (v_1^j, \ldots, v_n^j) \in \mathbb{R}^n$ for $1 \le j \le k$. Since $D^k f(p)$ is symmetric, then by combining like terms, $D^k(p)(x, \ldots, x)$ can be simplified to

$$\sum_{\substack{a\in\omega^n\\\|a\|=k}}\frac{k!}{a!}f^{(a)}(p)x^a.$$

Substituting this expression for $D^k f(p)(x, ..., x)$ in the above version of Taylor's formula yields the version of Taylor's formula given in Section 2.

References

- [1] F.D. Ancel, Collections of paths and rays in the plane which fix its topology, Topology Appl. 15 (1983) 99-110.
- [2] D.W. Curtis and L.R. Rubin, Sectionally continuous injections of Euclidean spaces, Topology Appl. 31 (1989) 159-168.
- [3] R.J. Daverman, Decompositions of Manifolds (Academic Press, New York, 1986).
- [4] M. Hirsch, Differential Topology (Springer, New York, 1976).
- [5] R.C. Kirby, On the annulus conjecture, Proc. Amer. Math. Soc. 17 (1966) 178-185.
- [6] R.C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. 89 (1969) 575-582.
- [7] J.E. Marsden, Elementary Classical Analysis (Freeman, San Francisco, CA, 1974).
- [8] E.E. Moise, Affine structures in 3-manifolds. V: The triangulation theorem and the Hauptvermutung, Ann. of Math. 56 (1952) 96-114.
- [9] F. Quinn, Ends of maps, III: dimensions 4 and 5, J. Differential Geom. 17 (1982) 503-521.