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Abstract 

Ancel, F.D., Topologies on Iw” induced by smooth subsets, Topology and its Applications 43 

(1992) 189-201. 

If Y is a collection of subsets of iw”, let Y!? denote the largest topology on Iw” which restricts to 

the standard topology on each element of Y, and let ?t$ denote the homeomorphism group of 

Iw” wtth the topology &. Let Y_, denote the standard topology on Iw” and let %?_d denote the 

homeomorphism group of [w” with the standard topology. 

Theorem 1. If 9 is any collection of subsets of R” which contains all Cl regular 1 -manifolds, then 

Jq = Tqcd 

A natural collection of subsets of [w” called smooth sets is defined which includes the zero set 
of every nonconstant polynomial and every C2 regular submanifold of iw” of dimension <n. 

Theorem 2. If Y is the collection qf all smooth subsets of R”, then F:, is strictly larger than F‘,,, and 

X9 is strictly smaller than X,t,, 

Theorem 3. There is an injectioe function f: R”+R” which is discontinuous at each point of a 

countable dense subset of R”, and whose restriction to each smooth subset of R” is continuous. 

Keywords: C’l-manifolds, smooth sets, induced topologies, induced homeomorphism groups, 

Taylor’s formula. 
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1. Introduction 

At the 1988 Spring Topology Conference in Gainesville, FL, Otto Laback, a 

physicist from Graz Technical University in Graz, Austria, posed the following 

question. Given that we can directly observe only certain subsets of IX” (such as 

smoothly embedded l-manifolds corresponding to particle paths), what possibly 

nonstandard topologies on W” are compatible with the usual topology on physically 

observable subsets? He also wondered how the homeomorphism group of R” with 

such a nonstandard topology compares to the standard homeomorphism group. The 
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following definition allows us to give a precise formulation of a version of this 

question. 

Let Y be a collection of subsets of [w”. Define yy to be {U c Iw”: U n S is a 

relatively open subset of S for each SE Y}. Then 5& is the largest topology on [w” 

which restricts to the standard topology on each element of Y. Define ZXy to be the 

homeomorphism group of Iw” with the topology &. Let ysstd denote the standard 

topology on [w”, and let 3$,, denote the homeomorphism group of R” with the 

standard topology. 

We now state a version of Laback’s question. 

Question. For which collections Y of subsets of Iw” is 5y = ystd, and is %?y = &,, ? 

We will answer this question for two different natural choices of Y. To understand 

these choices, we need several definitions. 

Let 1 s k < n and let r 2 1. Suppose V is an open subset of lRk and f = 

(fi,. . . , fn): V+R” is a map. Recall that f is a C’ map if at each point of V all 

the partial derivatives of the J’s of order <r exist and are continuous. For each 

x E V, let f(x) denote the n x k matrix whose (i,j)th entry is the first order partial 

derivative (aAla?,)( f is regular if for every XE V, the n x k matrix f(x) exists 

and is of rank k. f is a C’regular embedding iff is a C’ regular topological embedding. 

A subset M of [w” is a C’ regular k-manifold if for each x E M, there is an open 

subset V of [Wk and a C’ regular embedding e : V+ R” such that e( V) is a neighbor- 

hood of x in M. 

A subset S of [w” is smooth if each point of S has a neighborhood U in R” with 

the property that there is an r 2 1 and a C”+’ mapf:U+IWsuchthatSnUcf’(O) 

and f has a nonzero partial derivative of order <r at each point of U. For example, 

the zero set of every nonconstant polynomial is a smooth set. Also, for 1 s k< n, 

every C2 regulal k-manifold in Iw” is a smooth set. A proof of this fact is sketched 

in the appendix. 

We now formulate two theorems which answer our version of Laback’s question 

for two choices of 9. In Theorem 1, Y is required to include a class of subsets of 

R” which forces yy to equal ysstd, and which is the smallest natural class with this 

property that the author could imagine. In Theorem 2, Y is chosen to be a class of 

subsets of R” for which & fails to equal Fstd, and which is the largest natural class 

with this property that the author could imagine. 

Theorem 1. If 9 is any collection of subsets of R” which contains all C’ regular 

1-manzfolds, then FTF = FStd and, hence, 22, = X5,,. 

Theorem 2. If 9 is the collection of all smooth subsets of R”, then qY is strictly larger 

than TSstd and XY is strictly smaller than Yt&. 

Results similar to Theorem 1 have been obtained independently by C. Cooper in 

his 1990 University of Oklahoma Ph.D. thesis, and F. Gressl of Graz Technical 

University (unpublished). 
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The paper [2] investigates some related questions. The techniques developed here 

to prove Theorem 2 also allow us to generalize a construction in [2] and thereby 

to answer Question 3 of that paper. The result of our generalized construction is 

described in the next theorem. 

Theorem 3. There is a countable dense subset Z of R” and an injective function 

f: R" + R" which is discontinuous at each point of Z, continuous at each point of IF!” -Z, 

and whose restriction to each smooth subset of R” is continuous. 

Our proofs of Theorems 2 and 3 rely on the following technical theorem. Recall 

that an arc in [w” is tame if there is a homeomorphism of [w” which carries the arc 

to a straight line segment. 

Theorem 4. In R”, there is a tame arc A with endpoint 0 and an open set Vcontaining 

A - {0} with the property that if S is any smooth set containing 0, then 0 & cl(S n V). 

The reader may wish to refer to [l] where related results for Iw* are obtained. In 

[l], a different point of view is adopted, which leads to results that are not exactly 

parallel to those proved here. However, there is a strong similarity between the 

techniques used here and in [l]. 

The following notation is used at several points in this paper. For x = (x, , . . . , x,) 

and y = (y,, . . . , y,,) E R”, let x. y denote the dot product of x and y, and let 1x1 denote 

the Euclidean norm of x; thus, x’ y = 1 x,yi and /xl= (x.x)“*. 

2. The proof of Theorem 1 

It follows immediately from the definition of qcY that Ysstd c .YY. Let lJ E YTY. It 

suffices to prove that U E Ysstd. Assume U E Ysstd. We will derive a contradiction. 

Since l-I & 95,dr then there is a sequence {x,} in Iw” - U which converges (stan- 

dardly) to a point YE U. No element of Y can contain both y and a subsequence 

of {x,}. For if y E SE 9, then U n S is a standard neighborhood of y in S. So any 

subsequence of {x,} that lies in S would eventually enter U n S, contradicting the 

fact that {x,} lies in K!” - U. Now our strategy for reaching a contradiction is clear: 

we will construct an element of Y which contains y and a subsequence of {x,}. 

For each n 3 1, set u, =(x,-y)/] x, - yl. By passing to a subsequence, we can 

assume that {u,} converges to a point u E [w”. Clearly III= 1. For each n 2 1, set 

t, = (x, - y) . v. By passing to a subsequence, we can assume that {t,} is a sequence 

of positive real numbers converging to 0 such that t,,, <it, for each n 2 1. For each 

nal, set J,,=[($t,,(i)t,]. Then J,nJ,,=O for m#n. For each nsl, set w,= 

x,-y-t,v. Then w,+O and w,,/t,+O. 

We now define a C’ regular embedding CY : R + R” which passes through y and 

{x,}. First let 77 : R + [0, ~0) be a C” map such that ~((-a, 0] u [l, CO)) = (0) and 



192 ED. And 

n($=l. Define (u:R+R” by (~(t)=~+~tv+C~,,17((t/t,)-(~))w,. Thus, a(t)= 

y+tu+7j((t/t,)-($))w, if tEJ, for some n 21, and a(t)=y+tu otherwise. So LY 

is straight line perturbed by a sequence of bumps. 

cr passes through y and {x,}, because cy(0) =y and cr(t,,) =x, for n 2 1. Clearly, 

(Y is C” except possibly at t = 0. Since n is bounded and w, + 0, then a(t) + y = (Y (0) 

as t+ 0. Hence, cz is continuous at t = 0 (as well as at all other values of t). 

Furthermore, (Y is a topological embedding because (a(t) - y) . ZI = t for every t E R. 

Observe that (a(t)-y)/t=v+77((t/t,)-_(t))(w,/t) if tEJ,, for some nal, and 

((-u(t) -y)/ t = v otherwise. Since n is bounded, w,/ t s 2w,/ t, for t E J,,, and w,/ t,, + 

0, it follows that (a(t) -y)/ t + u as t + 0. So a’(O) exists and equals v. Observe that 

a’(t)=v+v’((t/t,)-($))(w,/t,) if tEJ, for some nsl, and cu’(t)=v otherwise. 

Since r)’ is bounded and w,/ t, + 0, it follows that a’(t) + v = a’(O) as t + 0. Hence, 

(Y’ is continuous at t = 0 (as well as at all other values of t). This proves (Y is a C’ 

map. Finally, a’(t) . v = v * v = 1 for each t E R, proving (Y is regular. We conclude 

that a : R + R” is a C’ regular embedding which passes through y and {x,}. So Q(R) 

is a C’ regular l-manifold in R”. 

Since cy(R) is an element of Y which contains y and a subsequence of the original 

{x,}, we have reached the desired contradiction. 0 

3. The proof of Theorem 4 

Our proof of Theorem 4 uses the following notation. Set w = (0, 1,2,. . . }. For 

a=(a,,...,k)Ewn, set IIall=C,,j,,"i and set u!=fl,,,,,(ui!). For x= 

(x1,. . ., x,) E R” and a = (a,, . . . , a,) E co”, set xa = n,~,~,,x41. If X is a set, cp = 

(Pi,. . ., cp,) : X + R” is a function, and a = (a,, . . . , a,) E co”, then define the function 

(p”:X+R’bycp”(x)=(cp(x))” =~,~i~n(~i(~))“~forx~X.Fora=(u,,. .., u,)Ew”, 

if U is an open subset of R” and f: U + R is a sufficiently differentiable map, then 

for every p E U set 

fi”‘(P) =ax.d”a’;xz,, (P). 
I’. . . 

Let r 2 1, and let U be an open subset of R”. A function f: U + [w is a C’ map 

if for each UEW” with J[ujjc r, f”‘(p) exists for every p E U and fiQ’ : U + R is 

continuous. Let Cr( U) denote the set of all C’ maps from U to R. 

Let r 3 1, let U be an open subset of R”, let f~ C’(U), and let p E U. The degree 

r Taylor polynomial off at p is 

Tjf(x) = ,,c,,, ;?(P)x” 

llall=r 

for x E R”. 

Our notation allows us to state: 
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A version of Taylor’s formula. Let r 2 1, let U be an open subset of R”, letf E C’+‘(U), 

and let p E U. If x E [w” such that U contains the straight line segment from p to p +x, 

then there is a 0 E (0, 1) such that 

f(p+x)= q&x)+ c -L f (a)(p + 0x)x”. 
atwf’ a! 

lioli=r+l 

In the appendix, we indicate how this formula is derived from a version of Taylor’s 

formula commonly found in advanced calculus texts. 

Observe that if r 3 1, U is an open subset of [w”, and f E Cr( U), then f has a 

nonzero partial derivative of order cr at p if and only if TLf(x) f 0. Using this 

observation, we restate the definition of smooth. A subset S of Iw” is smooth if each 

point of S has a neighborhood U in [w” with the property that there is an r > 1 and 

an fEC’+‘(U) such that Sn U c f -l(O) and TJfZ 0 for every p E U. 

Next, we define a linear order < on w”. For a, b E w”, we declare a < b if either 

~l)llall<llbll or@) lIaII=Ilbll andth ere is a k such that 1 s k s n, ai = bi for 1 s i < k, 

and ak < b,. We observe that < is a well ordering of w”, because for each a E w”, 

{b E w”: b < a} is a finite set. 

Our proof of Theorem 4 depends on the following lemma. 

Lemma. There are order preserving homeomorphisms cp, , . . . , qn : [0, l] + [0, l] with 

the following property. Dejine the embedding q : [0, l] + Iw” by cp = (cp, , . . . , cp,). Zf 
a,bcw” anda<:, then 

lim!C!.N=O 
1-0 (o”(t) . 

Proof of Lemma. We begin by defining the homeomorphism $:[O, ll+[O, 11 by 
$(O)=O and $(t)=ln2/(ln2-In t) for O<tsl. By applying 1’Hospital’s rule to 
In t/t-‘, we find that t’ln t + 0 as t-+ 0 for any r> 0. It follows that for any s > 

0, t”“/$( t) + 0 as t + 0. Thus, for any s 2 0, t/($(t))‘+ 0 as t + 0. 

Next define the homeomorphism $i: [0, l]+ [0, l] for each is 1 by $, = I+!J and 

I,!J~ = Cc, 0 I,/J-, for i> 1. Then for s ~0 and izl, since q,(t)+0 as t-+0, and since 

$i( t)/( +i+l( t))” = Gi( t)/( $( (cl,( t)))“, then the last line of the preceding paragraph 

implies that +i(t)/(+i+l(t))“+O as t+O. 

Finally for each i 2 1, define the homeomorphism cpi: [0, l]-[0, l] by q,(t) = 
t$i( t). The embedding cp : [0, l] -+ [w” is defined by cp = ((o,, . . . , cp,,). Recall that if 

a=(a ,,..., an)-5Wn, then (pa : [0, l] + [0, l] is given by 

v”(t) = (cpl(t))“l . . . (%(t))a’r. 

Let a, b E W” such that a < b. Then there is a finite sequence a = co ( c1 < . . . < ck = 

b in mn such that ci is the immediate successor of ci_, for 1 G is k. Since 

v”(t) P”(t) 
-zz 

v”(t) 
n- 

,SiSk cpyt)’ 
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then it clearly suffices to consider the situation in which b is the immediate successor 

of a. 

There are two cases. 

Casel: IjaII<Ilb(J.Inthiscasea=(r,O ,..., O,O)andb=(O,O ,..., O,r+l).So 

P”(f) (cpn(t)Y+’ 
cp”o= (cp,(t))’ = (!h(t))‘+’ 

t 
[ 1 c*(t))’ . 

It now follows from our earlier observations that cp”( t)/p”( t) + 0 as t+O. 

Case 2: Ila II= 1) bll. In this case there is a k, 1 s k < n, such that ai = bi for 

lsi<k,a=(a, ,..., akpl,r,s,O ,..., 0,O) and b=(a ,,..., ak_,,r+l,O,O ,..., 0, 

s-l). so 

cpb(t) h(w”h(t))“-’ -= 
v”(t) ((Pk(f))r(Pk+l(f)Y 

= [(*y(y))*] (*L,(t)rl. 

Again our earlier observations imply that (ph( t)/cp”( t) + 0 as t + 0. 0 

We now prove Theorem 4. We define the arc A in R” by A = q([O, l]), where 

cp : [0, l] + OX” is the embedding of the preceding lemma. Then 0 = ~(0) E dA. To see 

that A is tame, observe that for 1 G is n, the homeomorphism cpi : [0, l] -+ [0, l] 

extends to a homeomorphism Qi : R + [w such that Qi = id on (-cc,01 u [ 1, a). Define 

the homeomorphism h : R” + R” by h(x)=(@,(x,) ,..., @,(x,)) for x= 

(Xi,..., x,) E R”, and note that h carries the straight line segment {(t, . . . , t): 0 s t G 

l} onto A. 

For each t E (0, 11, define the neighborhood V(t) of cp( t) in R” by 

V(t)={(x,,...,x,)ErtV: 2-‘p,(t)<xi<2pi(t) for lsisn}. 

Observe that if t E (0, 11, x = (xi, . . . , x,) E V(t), and a E co”, then 2P11a11p”( t) <x0 < 

21’a”q”( t). Next define V = UOcrsl V(t). Then V is an open subset of R” containing 

A - (0). 

Let S be a smooth set containing 0. We shall prove that OG cl( Vn S). For assume 

otherwise. Then there is a sequence {xk} in Vn S that converges to 0. For each 

k > 1, there is a tk E (0, l] such that xk E V( tk). It follows from the way in which the 

V(t) are defined that { tk} must converge to 0. 

Since S is a smooth set and 0 E S, there is a neighborhood U of 0 in R”, an r 2 1, 

and an fg Cr+‘( U) such that S n U cfP’(0) and TLf # 0 for every p E U. We will 

argue that T&f = 0, and thereby reach a contradiction. 

We can assume that {xk} lies in U, and that for each k 2 1, U contains the straight 

line segment from 0 to xk. For each k Z= 1, f(xk) = 0 because xk E S n U. So, for each 

k 2 1, the Taylor formula for f(xk) takes the form 

0 = Gf(xk) + C -+(t%&)(&)” 
a2EW’~ a! 

‘la’(=r+1 

for some ok E (0, 1). 
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To make the right side of this formula more uniform, we define z,Y,k E R” for 

0 G s s r + 1 and k 2 1 as follows. For k 2 1, set z,~,~ = 0 if 0 s s s r, and set z,+,,~ = ekxk. 

Observe that for any fixed s between 0 and r + 1, limk_u^lzs,k = 0. Now the two terms 

on the right side of this formula can be absorbed into a single summation in which 

11 a 11 runs from 0 to r + 1. For each k 2 1, we rewrite the Taylor formula for f(xk) as 

o= c +, 
atw’f a! 

zll,l(,k)(xkY. 

lialiSr+l 

We now begin the inductive proof that Tkf= 0. The first term of Thf is f (“(0) = 

f(0). f(0) = 0 because 0 E S n U. So f (“(0) = 0. 

Next let a E g” such that 0 < ((a 11 s r, and inductively assume that if b E co* and 

b < a, then f ‘b’(O) = 0. Then for each k 2 1, the Taylor formula forf (xk) takes the form 

o= c 
btw” 

6-t @)( Z,,b,,,k)(xdh. 

~Ib~lsr+l 

ash 

By passing to a subsequence of {xk}, we can assume that for each b E co* with 

11 b (( s r + 1, the sequence {f (b)( zllbll,k)} does not take on both positive and negative 

values. Then for each b E co” with llbll s r+l, set c(b) =+l or -1 depending on 

whether {f (b)(Zllbll,k )} is nonnegative or nonpositive. 

For each k 2 1, since xk E V( tk), then for each b E co” with II bll G r+ 1, we have 

the inequality 

2-“b”$( ?k) < (Xk)b < 2”b”@( tk). 

Multiplying this inequality by f (b)( ziibli,k) yields the inequality 

2-F(b”‘b”f ‘b’(Z,,b(,.k)(fb(fk) sf (b)(Z,,b(,,k)(Xk)b 

Dividing the preceding inequality by b !, summing over all b E co” with II b (( s r + 1 

and a s b, and recognizing the middle summation as a version of the Taylor formula 

for f(xk), yields the inequality 

We divide the preceding inequality by cp”( tk), to obtain 

F(b)Jlb” $f”“(z,,b,,,C) $#OG bg,, 24b”‘b” ;f(yZ,,b,,,*) g-. 

Ijb~l=r+l Ilbllsrtl 

ash osb 
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Now we let k+ 00 in this inequality. Then fk + 0. So the above lemma implies 

that if b E co”, 11 bll sr+l, and a<b, then ~h(tk)/~a(tk)+O. Also if bEw” and 

IJbJJsr+l, thenf”)( Zl/hll,k) +f’“‘(O) because Zllbll,k +O. Thus, all the terms of the 

summations vanish except the b = a terms. zllall,k = 0 because IJaIl G r. So we are left 

with the inequality 

Since 2*r(o)‘la’l/a! > 0, we conclude that f’“‘(0) = 0. 

It now follows inductively that f’“‘(0) = 0 for each a E W” such that llall c r. 

Therefore, Thf= 0. We have now reached the contradiction we sought. We conclude 

that Og cl (Vn S). 0 

4. The proof of Theorem 2 

Let Y denote the collection of all smooth subsets of R”. It follows immediately 

from the definition of Y& that Yslstdc F,<?. Let A be the arc constructed in Theorem 

4. A - (0) is not a standard closed subset of R”. However, Theorem 4 implies that 

A - (0) is a closed subset of R” with respect to the topology YY. So (W” -A) u (0) .@ 

9- std, but (R” -A) u (0) E .TY. Therefore, .Y& is strictly larger than Ystd. 

Since A is a tame arc, there is a (standard) homeomorphism h : R” + R” such that 

h(A) is a straight line segment. Thus, h E Xse,,, . Since every straight line in R” is a 

smooth set, and every subset of a smooth set is smooth, then h(A) E 9 Hence, FY 

restricts to the standard topology on h(A). With respect to the standard topology 

on h(A), h(0) is a limit point of h(A-(0)). So h(A-(0)) is not a closed subset of 

h(A) with respect to either Fsstd or %. Consequently, with respect to 5$, A - (0) 

is a closed subset of R” but h(A-(0)) is not. We conclude that h t? XT/. This proves 

XY # %,, . 
Before proving XY c Xsestd, we make two observations. Let h E i&. 

(1) If SE 9, then h I S: S+ R” is continuous (in the standard sense). 

(2) If U is a connected open subset of R”, then h(U) is connected. 

(1) follows because Tp restricts to the standard topology on S and Yslstd= Tp. (1) 

implies that if J is a straight line segment in R”, then h(J) is connected. To prove 

(2), let x and y E U. Then x and y are joined by a piecewise linear path J in U. 

Since h maps each straight piece of J to a connected set, then h(J) is a connected 

subset of h(U) joining h(x) to h(y). This proves h(U) is connected. 

We now prove 3Y& c X$,, . Let h E 2?&. Suppose U E Fsstd. We will prove h( U) E 
.T std. Let XE I/. Choose r>O so that {PER”: Ix-yl~r}c U. Let S= 

{y E R”: (x - y[ = r}, let V = {y E R”: (x - yl < r} and let W = {y E 12”: Ix - yl> r}. Since 

S is a compact smooth set, then observation (1) implies h/S is an embedding. SO 

h(S) is an (n - I)-sphere in R”. The Jordan Separation Theorem now implies that 



Topologies on W” induced by smooth subsets 197 

R” - h(S) has precisely two components. Moreover, these components are open 

subsets of R”. Observation (2) implies that h(V) and h(W) are connected. Also, 

since h : R” + R” is a bijection, then R” - h(S) = h( V) u h( W) and h( V) n h( W) = 0. 

It follows that h( V) and h( W) are the two components of R” - h(S). Hence, h( V) 

is an open subset of [w” such that h(x) E h(V) c h( U). This proves h(U) E ystd. We 

can similarly prove that if U E ystd, then K’(U) E yslstd. It follows that h E %$,. We 

have now proved that 91?:~ c Xstd. 

We conclude that 9t, is strictly smaller than &,. 0 

5. The proof of Theorem 3 

We refer the reader to [2, Section 41 for a 2-dimensional version of this con- 

struction. 

Let A be the tame arc and V the open set in R” constructed in Theorem 4. For 

each PER”, let A(p)=A+p={x+p: XEA} and let V(p)= V+p={x+p:x~ V}. 

Since translation takes smooth sets to smooth sets, it follows that if S is a smooth 

set and PES, then pGcl(Sn V(p)). 

The desired function f: R” + R” arises as a composition f = g 0 h where g, h : R” + 

[w” are functions satisfying the following four conditions. 

(1) Y is a countable dense subset of R”. 

(2) g : R” + R” is an injective function which is discontinuous at each point of Y 

and continuous at each point of R” - Y. 

(3) For each y E Y, there is an open subset W(y) of R” such that if { wk} is a 

sequence in R” - W(y) that converges to y, then {g(wk)} converges to g(v). 

(4) h :R” + R” is a homeomorphism such that for each y E Y, h( V(h-l(y))) 

contains W(y). 

Assume for the moment that we have functions g, h : R” -f R” satisfying conditions 

(l)-(4). Set 2 = h-‘( Y) and f = g 0 h. Then clearly 2 is a countable dense subset 

of R”, and f is an injective function which is discontinuous at each point of 2 and 

continuous at each point of R” -Z. Let 3 be a smooth subset of R”. Clearly, flS is 

continuous at each point of S-Z. Suppose z E S n Z. Let { wk} be a sequence in S 

that converges to z. Since z ,@ cl(S n V(z)), then we can assume that { wk} avoids 

V(z). Now, hi Y, and {h(wk)} converges to h(z) and avoids W(h(z)). So, by 

condition (3), {g(h(w,))} converges to g(h(z)). Hence, cf(wk)} converges to f(z). 

This proves f/S is continuous at z. We conclude that f]S is continuous. It remains 

to construct the functions g and h. 

We now construct g. Let {x,: i 2 1) be a countable dense subset of R”. Let u E R” 

such that InI = 1 and vf (xi-x,)/Ix;-x,/ for all i#j. For each i> 1, define C, = 

{X~+t~~-l/i~t~0},Di~{~i+t~:O~f~1/i},Ej={~i+t~:l/i~t~2/i},andFi= 

Ci u Di u Ei. Then the collection 9 = (0, : i 2 l} u {{x}: x E R” - lJ,a,~i} is an upper 

semicontinuous decomposition of R” into a null sequence of tame arcs and points. 

Hence, 9 is shrinkable [3, p. 561. So there is a closed onto map rr : R” +R” such 
that {~x-l(x): x~lR”}= 9. 
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Let i 3 l.Note that rr( Fi) is an arc. We will prove that 7r(Fi) is tame. First, observe 

that the decomposition 8 = (0, : i #j 3 l}u{{x}: xER”-lJi,j,,Dj} is strongly 

shrinkable [3, p. 561. Hence, there is a closed onto map p:R” +R” such that 

{p-‘(x): x E R”} = ‘8 and plF, = id. Also, clearly, there is a closed onto map U: R” + R” 

such that a(Q) = {x,}, (T(F~) = Fi, and {a-’ (x): x E W”} = {Oi} u {{x}: x E R” - 0,). 

Hence, u 0 p : R” + R” is a closed onto map such that {(c 0 p))‘(x): x E R”} = 9 and 

(T 0 p( F;) = Fi. Since, {K’(x): x E R”} = {(P 0 p)-‘(x): x E R”}, then there is a homeo- 

morphism T: R” + IF!” such that T 0 rr = (T 0 p. So T( r(F,)) = CT 0 p( Fi) = F,. This proves 

n(Fi) is tame. 

For each i 2 1, set yi = n(Q) = r(xi), and set Y = {yi : i 2 1). Since {xi : i 2 1) is 

dense in R”, then so is Y Define g:R” + R” by g(x) = r-‘(x) if x E R” - Y and 

g(y,) = xi for i 2 1. Then rr 0 g = id. So g is injective. 

To prove that g is continuous at each x E R” - Y, let N be a neighborhood of 

g(x) = K1 (x) in R”. Since n is a closed map, there is a neighborhood M of x in 

R” such that r-‘(M) c N. Since g(M) c K’(M), then g(M) c N. 

To prove that for each ia 1, g is discontinuous at yi, fix iz 1, and set wk = 

r(xi + (l/i + l/ k)u) for each k 2 1. Then { wk} is a sequence in R” - Y that converges 

to rr(xi + (l/i)u) = yi. However, {g( wk)} does not converge to g(yi), because {g( wk)} 

converges to xi+(l/i)v and g(y,) = xi. 

We remark that at this point we have verified the first two of conditions (l)-(4) 

stated at the beginning of this proof. 

Next, for each i 3 1, we find an open subset Pi of R” such that 

(5) rtEi)-{Yilc ST 
(6) cl( Pi) n r( Ci) = {yi}, and 

(7) if {wk} is a sequence in R” -Pi that converges to y,, then {g(wk)} converges 

to g(Yi). 
Fix i 2 1. If U is an open subset of R”, let U* = U{O E 9: D c U}; then U* and 

n( U*) are open subsets of R”, because r is a closed map. Let Q and R be open 

subsets of R” such that C, -{xi} c Q, (Di u Ei) -{xi} c R, and Q n R = $3. Then Q* 

and R” are open subsets of R” such that C, -{x,} c Q” and Ei -{xl + (l/ i)u} c R*. 

It follows that n(Q*) and n(R*) are disjoint open subsets of R” such that n(Ci) - 

{y,} c rr( Q*) and n(Ei) -{y,} c r(R*). Consequently, n( C,) n cl( r( R”)) = {yi}. Set 

pi = s-(R*). Then pi is an open subset of R” such that m(E,) -{y,) c Pi and Cl(Pi) n 

V( ci) = {Yi>. 
Suppose {wk} is a sequence in R” -Pi that converges to yi. We must prove that 

{g( wk)} converges to g(yi) = xi. Let N be a neighborhood of xi in IX”. The collection 

E = (0, : i #j 3 I} u {{x}: x E 1~” - lJigj,l~j} is an upper semicontinuous decompo- 

sition of R”. If U is an open subset of R”, set U# = U{E E %‘: E c U}; then U# is 

an open subset of R”. Q - {xi} c R*, because Di -{xi} c R; and xi E N#. SO N# u R# 

is a neighborhood of Di = Y’(y,) in R”. Since rr is a closed map, there is a 

neighborhood M of yi in R” such that Y’(M) c N# u 0”. Since { wk} converges 

to yi, then there is a K 2 1 such that wk E M for k 2 K. Let k 2 K. If wk = y,, then 

g(w,)=xjEN. So suppose wk#yi. Then r-‘(wk)E%. SinCe WkEPi=T(R#), then 
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6’( wk) q R. So T-’ (wk)n R#=0. Since nP’(wk)c K’(M)c N#u R#, it follows 

that 7~-‘( wk) c N#. Since g( wk) E K’( wk) and N” c N, then g( wk) E N. This proves 

{g( Wk)} converges t0 Xi = g(Y,). 

Observe that property (7) implies that if i 2 1, M is a neighborhood of yi in Iw”, 

and {We} is a sequence in [w” - (P, n M) that converges to Yi, then {g( wk)} converges 

to g(Yl). 
Recall that A is the tame arc and V is the open set in [w” provided by Theorem 

4, 0 is an endpoint of A, and A - (0) c V. Let V’ be an open subset of Iw” such that 

A-(0)~ V’and cl V’c{O}u V. ForeachpE[W”, let V’(p)= V’+p={x+p:x~ V’}. 

We obtain the homeomorphism h of [w” as the limit of a sequence {hi} of 

homeomorphisms of [w”. The sequence {hi} together with a sequence {M,} of open 

subsets of Iw” are constructed inductively to satisfy the following four conditions. 

(8) For each XE[W”, Ihi(x)-h,+,(x)l<2P’ and Ih;‘(x)-h~~:,(x)(<2~‘. 

(9) For each j > i, h,y’(Y,) = h,‘(y,). 

(IO) Yi E M,. 
(11) For each js i, hj( V’(hi’(yi))) contains cl(Pin M,)-{yi}. 

Assume for the moment that we have {hi} and { Mi} satisfying conditions (8)-( 11). 

Then condition (8) guarantees that {hi} converges uniformly to a map h : R” + R”. 

Moreover, h is a homeomorphism, because the second inequality in (8) implies 

that {hi’} converges uniformly to h-‘. Next we verify conditions (3) and (4) (stated 

at the beginning of this proof). Condition (9) implies that h-‘(yi) = h,‘(Y,) for 

i 2 1. For each i > 1, let W(y,) = Pin M,. Now for each in 1, property (7) implies 

that if {wk} is a sequence in [w” - W(y,) that converges to Yi, then {g(wk)} con- 

verges to g(y;). Condition (11) and the observation that K’(y,) = h;‘(y,) imply that 

hJ’(Pi n M,) c V’(h-‘(y,)) for js i. Since {h,‘} converges to h-‘, we deduce that 

h-‘(P, n M,)c cl( V’(h-‘(y,))). Since Cl( V’(h-‘(yi)))c {hp’(yi)}u V(h-‘(y,)) and 

yi & Pii, then K’(Pi n M,) c V(h-‘(y,)). We conclude that h( V(h-‘(y,))) contains 

W(Yi). 
It remains to construct {hi} and {Mi}. We begin this construction by setting 

h,, = id,,s and M,, = 0. Let i 2 1, and inductively assume we have h, and M, for 

0~ j < i. Set z = hyY,(yi). Choose a neighborhood N of z in [w” such that hl_‘,(y,) & N 
for 1 ~j < i, diam N < 2-j and diam hi_‘(N) <2-‘, and such that for 1 ~j< i, if N 

intersects h ;_“(cl( Pj n M,)), then N c V’(hy?‘(Yj)). NOW recall that A(z) and 

h~?‘(~(F’))=h~?‘(~(Ci))Uh~?‘(~(Ei)) are tame arcs and z is an endpoint of A(z), 
h;I,(n(Ci)), and hF?,(r(E;)). Hence, there is a homeomorphism T, of Iw” which 

fixes z and takes A(z) onto hl_‘,( n-( E,)). Using the Annulus Theorem ([8,5] for 

dimension 3, [9] for dimension 4, and [6] for dimensions ~5), we can find a 

homeomorphism rz of [w” which agrees with 7’ on a small ball neighborhood of z 

and is the identity outside a larger ball neighborhood of z. Hence, we can assume 

there is a neighborhood N’of z contained in N such that ~,(A(z)) 2 h;_‘,(r(Ei)) n N’ 

and r2 = id outside N. Hence, h;_“( n-(E,)) n N’ c z u T~( V’(z)). Also h;/,(n(E,)) c { } 

{z}uh;Yl(Pi) and cl(h;_‘,(Pi))nh;_l’(~(C,))={z}. Thinking of the tame arc 

h;?,(r(F;)) as a straight line segment, we see that there is a homeomorphism 73 
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of R” which moves points away from h;?,(v(Ci)) toward h;_‘,(n(E,)) and takes 

each round sphere centered at z onto itself such that 

(12) there is a neighborhood N” of z in N’ such that ~~(cl( hFI_‘,( fi)) n N”) c {z} u 

T2( V’(z)), 

(13) r3(z) = z, and 

(14) r3 = id outside N. 

Then r;‘(z) = z, T;~ = id outside N, and {z} u r;’ 0 r2( V’(z)) contains cl( h Lyt,( Pi)) n 

N”. Choose a neighborhood Mi of yi such that cl(h~?r(M,)) c N”. Then 

7;’ 0 TJ V’(z)) contains hF?,(cl(P, n M,) -{vi}). Define the homeomorphism hi of 

R” by hi = hi_, 0 7;’ o 72. The properties of N together with the fact that T;I 0 TV is 

supported on N imply that hi satisfies conditions (8) and (9) and that hi( V’(h,y’(y,))) 

contains cl(P, A Mj) - {uj} for 1 G j < i. Also, T* and TV have obviously been chosen 

to insure that h,( V’(h;‘(y,))) contains cl(P, n Mi) -{vi}. So hi satisfies condition 

(11). 0 

6. Questions 

Let Y be the collection of all smooth subsets of R”. 

(1) What are the topological properties of R” with the topology &? For instance, 

is it regular? normal? paracompact? first countable? second countable? separable? 

locally compact? connected? locally connected? contractible? locally contractible? 

What is its dimension? 

The second question is a reformulation of questions (1) and (2) of [2]. 

(2) Supposef: R” + R” is an injective function whose restriction to each smooth 

subset of R” is continuous. Let 2 = {x E R”: f is discontinuous at x}. 

(a) Can 2 be uncountable? 

(b) Can 2 be a (tame) Cantor set? 

(c) Can dim Z > O? 

Appendix 

First we prove that if 1s k< n and M is a C* regular k-manifold in R”, then M 

is a smooth set. Let p E M. Then there is a C2 diffeomorphism $: U + V from a 

neighborhood U of p in R” to an open subset V of lRk x Rnmk such that (Cr(M n U) = 

([WkX{O})n V [4, p. 2151. Define n:[WkX[Wn-k+R by rr(x,, . . . ,xk,y,, . . . ,yn-k)= 
yl. Then m 0 +: U + R is a C* map such that M n U c (T 0 $)-l(O). Also, for each 

q E U, since (r 0 $)‘(q) = rr’(+(q)) . q’(q), 4’(q) is rank n and d(+(q)) is rank 1, 

then (r 0 +)‘(q) is rank 1; so r 0 + has a nonzero first order partial derivative at q. 

Second, we indicate how the version of Taylor’s formula given in Section 2 is 

derived from the following version which is commonly found in advanced calculus 

texts. Let r 2 1, let U be an open subset of R”, let f: U + R be a C’+’ map, and let 
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p E U. If x E R” such that U contains the straight line segment from p to p + x, then 

there is a 0 E (0, 1) such that 

f(P +x> = kg, ; DkfW(x, . . . 7 x> + &jy D”‘f(P + ex)(x, . . . , x> 

[7, p. 1791. Here @f(p) : (IR”)~ + Iw is the symmetric multilinear function 

Dkf(p)(v’,...,vk)= c akf 
ISi,GnaXi,,...,dX,, 

(p)v;, . . . z$ 

Isj=k 

wherev’=(v{,..., v’,) E R” for 1 ~j < k. Since D"f (p) is symmetric, then by combin- 

ing like terms, Dk(p)(x, . . , x) can be simplified to 

1 2 f'"'(p)x". 
atWfl a! 
Ilall=k 

Substituting this expression for Dkf(p)(x, . . . , x) in the above version of Taylor’s 

formula yields the version of Taylor’s formula given in Section 2. 
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